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Generation of Orthogonal Boundary-Fitted

Coordinate Systems

Roderick M. Coleman

Computation, Mathematics, and Logistics Department

David W. Taylor Naval Ship Research and Development Center

Bethesda, Maryland 20084



ABSTRACT

A methodis presented for computingorthogonal boundary-fitted
coordinate systemsfor geometries with coordinate distributions specified
on all boundaries. The systemwhich has found most extensive use in

generating boundary-fitted grids is madeup of the Poisson equations

_xx + = p_yy
(l)

qxx + qyy = Q

The functions P and Q provide a means for controlling the spacing and

density of grid lines in the coordinate system. Since all calculations are

done in the computational plane, the dependent and independent variables in

Equation (i) are interchanged, giving the usual transformed equations

_x_ - 28x_n + yxqq + 72(px$ + _xq) = 0

_Y_ - 28Y_N + YYBn + j2(py_ + Qyn) = 0

CL = X2 + 2
n Yq

where

The condition for orthogonality, i.e., _ = constant lines perpendicular to

n = constant lines, is B = 0, because

8 = 0 _ x_/y_ = -yn/xn

which is equivalent to

l/yxJ = -Yxlq = constant _ = constant

As a generating system based entirely on 8, we consider

_ = Bn = 0 (3)

which can have an orthogonal solution only when 8 = 0 at the corners of the

computational region. An iterative solution of the generating system given

in Equation (3) is applied successfully to several geometries. While questions

remain concerning the existence and uniqueness of orthogonal systems, the

generating method presented here adds to the available, useful techniques for

constructing these systems.
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Figure i



Figure i provides a comparison of two grids generated for a square

region with nonuniform boundary coordinate spacing in both vertical and

horizontal directions. The nonorthogonal mesh shown in Fig. la was

generated using the Poisson system given by Equation (2) with P _ Q E 0.

Equation (2) was replaced with central difference formulae and the resulting

system was solved by successive overrelaxation (SOR). The orthogonal mesh

shown in Fig. ib was obtained using Equation (3) as a generating system.

Equation (3) was expanded and each derivative was replaced with the

appropriate central difference formula. Again, the resulting system was

solved by SOR iteration.
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Figure 2



Two21 x 21 girds generated for a simply-connected region with
one convex boundary are shownin Figure 2. Fig. 2a showsa nonorthogonal
coordinate system generated by Equation (2) with P _ Q E 0 (a Laplace
system); Fig. 2b showsa coordinate systemgenerated by Equation (3).
Note the orthogonality of the coordinate lines intersecting the curved
upper boundary in Fig. 2 and the resultant bending of these lines in the
interior.
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(b)

Figure 3



Figure 3 shows a region similar to that of Fig. 2 with a concave

rather than convex curved boundary. As before, Fig. 3a shows a Laplace-

generated grid and Fig. 3b shows a B-generated grid obtained using

Equation (3). The orthogonal mesh must have rather fine spacing near

the concave upper boundary to accommodate the curvature. To verify that

the fine mesh spacing in Fig. 3b is due to the geometry and not to a

singularity in the transformation, we have refined the mesh as seen in

the next figure.
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Figure 4 comparestwo different grids, one coarse with 1681 points
and the other fine with 6561 points, generated for the concave region.

The fact that corresponding grid lines are in about the same position in

both meshes confirms that the coarse discretization yields a good

approximate solution to the exact problem. A further confirmation comes

from consideration of the Jacobian at the midpoint of the upper boundary.

The value of the Jacobian computed on the coarse mesh is nonzero and

agrees very well with the value computed on the fine mesh. There is no

indication of a zero Jacobian anywhere in the region.
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To demonstrate some of the problems that can arise, we attempted

to generate an orthogonal mesh on a region similar to the previous one

but with greater curvature of the concave boundary. The grid shown in

Fig. 5a was generated by a Laplace system and the unacceptable grid in

Fig. 5b was generated by the system of Equation (3). To verify that a

mesh with crossing lines can also be produced by a Poisson system, we

computed directly the forcing functions P and Q using Equation (2) with

x and y as given in Fig. 5b. We then solved Equation (2) iteratively for

x and y using this P and Q, and regenerated the grid of Fig. 5b.



(a)

(b)

Figure 6



As the final example, we considered a doubly-connected region
boundedby concentric circles as shownin Fig. 6. Since this region is

symmetric with respect to any line passing through the center, each grid
was generated for half the region and reflected in the line of symmetry.
The symmetryline was treated as a boundarywith fixed coordinate

distribution, thus assuring that B = 0 at the corners of the computational
region. The spacing on the outer boundary, but not on the inner boundary,
wasuniform. Hadthe spacing on both boundaries been uniform, the grid
producedby the Laplace generating system (Fig. 6a) would have been the

usual polar coordinate systemwhich is orthogonal. In Figs. 6a and 6b, the
line of symmetrywas taken as a horizontal line through the center of the
figure. Themeshof 6a was used as an initial guess for the iterative
procedure used to obtain the meshof 6b.



Figure 7



In Fig. 7, we showa _-generated grid computedfor the samedoubly-
connected region used in the previous figure. As before, the meshof

Fig. 6a was used for the initial guess, but in this case the line of
symmetrywas taken as a vertical line through the center. Interestingly,
the two orthogonal grids generated for the samephysical region (Figs. 6b
and 7) are quite dissimilar becausedifferent points were held constant
after the sameinitial guess.



•_ GEI_n_I'±O_ OF BODY OONFORMING GRIDS FOR 3-D

AXIAL TURBOMACHINEEY FLOW CALCULATIONS

by Djordje S. Dulikravich



AB STRACT

A fast algorithm has been developed for accurately generating boundary

conforming, three-dimensional, consequtively refined, computational grids

applicable to arbitrary axial turbomachinery geometry. The method is based

on using a single analytic function to generate two-dimensional grids on a

number of coaxial axisymmetric surfaces positioned between the hub and the

shroud. These grids are of the "0"-type and are characterized by quasi-

orthogonality, geometric periodicity and an adequate resolution throughout

the flowfield. Due to the built-in additional nonorthogonal coordinate

stretching and shearing, the grid lines leaving the trailing edge of the

blade end at downstream infinity, thus simplifying the numerical treatment

of the three-dimensional trailing vortex sheet.

*NASA - National Research Council Research Associate, NASA-Lewis

Research Center, Computational Fluid Mechanics Branch, Cleveland, Ohio

44135. Presently a visiting research scientist at DFVLR-G_ttingen

Universit_t, F.R. Germany.



The main objective of this work is to develop a fast algorithm for gen-

erating body-confoming three-dimensional computational grids. An equally

important objective is to preserve the high accuracy of the discretized re-

presentation of the solid boundaries. When analyzing steady flows through

turbomachinery rotors and stators, it is sufficient to consider a single

rotationally periodic segment of the flowfield. This segment is a doubly

infinite strip stretching in the direction of the axis of rotation. The

strip has a constant angular width of 2_/B where B is the total number

of blades. Each blade has an arbitrary spanwise distribution of taper,

sweep, dihedral and twist angle. The local airfoil shapes can vary in an

arbitrary fashion along the blade span. The rotor hub and the duct (or

shroud) can have different arbitrary axisymmetric shapes.

Such an arbitrary three-dimensional physical domain (Fig. I) is first

discretized in the spanwise direction by a number of coaxial axisymmetric

surfaces which are irregularly spaced between hub and shroud.

X
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The major problem in generating the spanwise surfaces is an accurate

determination of the intersection contours between the irregular blade sur-

face and the coaxial axisymmetric surfaces cutting the blade. The coordi-

nates of the points on these contours are defined by fitting cubic splines

along the blade and interpolating at the radial stations corresponding to

each axisymmetric surface r = const.

rs(X)

__. I__.' h_L1.__I_\x _

"/////////////////////////i

r(x)- rh(x)

rs(X)- rh(x)



The two-dimensional grid should have the following features: (a) grid

cells should conform with the contour shape and the shape of the periodic

boundaries ab and _d, (b) grid should be geometrically periodic in the

e'-direction meaning that the grid loints along the periodic boundary ab

must have the same _espective x'-coordinates as the grid points along the

periodic boundary cd, (c) grid lines should not be excessively non-

orchogonal in the vicinity of solid boundaries, (d) a grid line emanating

from the trailing edge should end at downsteam infinity and (e) grid cells

should be concentrated in the regions of high flow gradients.

a b

0 501

-2.051 -I.049 047_I-_ 986 I.958 2.96

-0501

C

-1.509

d



Once the shape of the intersection contour on a particular cutting

axisymmetric surface is known, the problem becomes one of discretizing a

doubly-connected two-dimensional domain w = x + i8.

c _s

b



A grid with these properties can be most easily generated with the use

of a single analytic function. One such function is

w = in\m + _/ + In \i + m_/' 0 < m < 1

where w = x + ie and z : _ + iq. This complex function maps conformally

unit circle with a slit in the middle whose end-points are situated at

z = _+m onto the cascade of straight slits in the u-plane. Each slit has a

length £s where

= 4(cos B sinh -I 2m cos B
£s k i - m 2

+ sin B sin -I 2m sin B_

1 +m2/

The slits are spaced 2_ cos B distance apart, where B is the stagger
angle of the cascade of slits.



Theunit circle is "unwrapped"using elliptic polar coordinates (2,4)
resulting in a deformedrhomboidal shapewhich is then sheared in the hori-
zontal and vertical direction (2) resulting in a rectangular (X,Y) computa-
tional domain.
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The transformation of an actual cascade of airfoils will result in a

cascade of unit circles which are even more deformed. Consequently, more

nonorthogonality will be introduced in the transformation by additional

shearing of coordinates. A uniform grid in the (X,Y) plane which is symmet-

rically spaced with respect to the Y-axis, remaps back into the physical

(x,8) plane as an "O"-type boundary conforming grid. The actual radial

coordinates are obtained by fitting cubic splines along the elliptic mesh

lines and interpolating at a number of axial stations at which the radius of

the corresponding axisymmetric surface is known.

1"57I

1.04 I

a , b X'

C -0.53

_1.06t



The present method is equally applicable to the blades with blunt (or

rounded), wedged and cusped trailing and/or leading edges.

-0.7 -0.3 1.3

-0.2

-0.61



A disadvantage of the present method is that it is not applicable for

the very thick, highly stagered blades which are very closely spaced. This

problem can be resolved by using a different form of the mapping function;

for example, one which mapps a cascade of circles into a cascade of circular

arcs instead of a cascade of straight slots.

04

| |

0.I 0.8 1.2



A sample run shows that it takes i0 seconds of CPU time on an IBM 3033

to generate (x, y, z) coordinates of two 3-D grids and to write them on two

separate disks (5). The first (coarse) grid consisted of 27x9x8 points and

the second (refined) grid has 51x15x14 poirts.
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BOUNDARY-FITTED COORDINATES FOR REGIONS WITH

HIGHLY CURVED BOUNDARIES AND REENTRANT BOUNDARIES

U, GHIA AND K,N, GHIA

UNIVERSITY OF CINCINNATI, CINCINNATI, OHIO

A procedure has been developed, using the differential-

equation approach, for generating bounda_--fitted coordinates

for regions with highly curved boundaries as well as reentrant

boundaries, such as those encountered in breaking surface

waves. The resulting coordinates are nearly orthogonal and

can provide adequate resolution even in the reentrant region.
Consistent treatment of end boundaries and the use of a

systematic initialization scheme and advanced implicit

numerical solution techniques make the procedure highly

efficient. The method developed for implicit enforcement of

the periodicity boundary condition should be beneficial in

the analysis of turbomachinery flow applications.



CONSISTENT TREATMENT OF END-BOUNDARIES

!

A

¢

I ¢= Cmax
n=l

B |H

_=0 --_... curves of

_;_n=constant

i111 i n =0
A (¢=0) z

A limiting form of the coordinate e_uations at the

end-boundary is solved to determine, prior to the complete

solution, the point distribution at this boundary, con-

sistent with the interior distribution. This procedure
avoids discontinuities in the transformed-coordinate

derivatives near the end-boundaries, while maintaining

Dirichlet boundary conditions for the transformation.



SOLUTION OF LIMITING EQUATION AT END-BOUNDARY

-Qa i

-I.0 -0.6 -0.2 +0.2 0.6 1.0

1.0

0.8

0.6

n

'_' ' ' ' ,2

,.,,.o.oo,..../,)J"

0 2 /f, la i I=0.

0 O_ / i i I i

0.8 1.0 1.2 1.4 1.6 1.8

Y

where

Q(r]) =

+ Q 3 0
nn _n =

2[ l___akexp[_(___k) 2/(2b2)]
k=l

al < 0 ,

b I = b 2 = 0.i

HI=O,

[al[ = a 2

= 1
_2
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INITIALIZATION PROCEDURE

GEOMETRIC INITIALIZATION
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SURFACE-ORIENTED COORDINATES FOR DUCT WITH HIGHLY

CURVED BOUNDARIES

BOUNDARY-ORIENTED COORDINATES FOR A TYPICAL SURFACE WAVE

WITH REENTRANT BOUNDARIES



IMPLICIT ENFORCEMENT OF PERIODICITY BOUNDARY CONDITION

DIFFERENTIAL EQUATION:

! I

¢ + a¢ =b

PERIODICITY BOUNDARY CONDITIONS:

¢0 = ¢i = A ;

l !

¢0 = ¢i = B

where A and B are unknown.

_ULUI IUN H_UC_-DU_h: Let ¢ = Af + Sg + h

with

I 1 ! l

f'' + af = 0 g + ag = 0 h + ah = b

f0 = 1 go = 0 h 0 = 0

l l !

fl = 0 gl = 1 h ! = 0

Then,

Af I + Bg I + h I = A

! ! !

Af 0 + Bg 0 + h 0 = B

so that

! | ! !

A = [hl(l-g 0) +h 0 gl]/[(l-f I) (l-g0) - f0 gl ]

| | ! l

B = [h0(l-f I) + f0 hl]/[(l-fl) (l-g0) - f0 gl ]







TABLE i. EFFECT OF MULTIGRID (MG) ITERATION TECHNIQUE ON

CONVERGENCE OF COORDINATE SOLUTION FOR CASCADE

WITH EASILY APPLICABLE PERIODICITY

Work Units of CPU

Method Grid Resp. Finest Grid Seconds Remarks

ADI

SIP

MG-SIP

ADI

SIP

MG-SIP

MG-SIP

(65 x 17)

(65 x 17)

(65 x 17)

(65 x 17)

(65 x 17)

(65 x 17)

(129 x 33)

100

53

6.5

95

25

7.5

6.4

37.69

11.96

2.08

36.67

6.33

2.32

8.44

uniform spacing

uniform,spacing

uniform spacing

nonuniform spacing

nonuniform spacing

nonuniform spacing

nonuniform spacing

TABLE 2. CONVERGENCE OF COORDINATE SOLUTION FOR CASCADE

GEOMETRY WITH PERIODICITY USING A STRONGLY

IMPLICIT PROCEDURE (SIP) AND MULTIGRID (MG)

TECHNIQUE

Work Units of CPU
Method Grid Remarks

Resp. Finest Grid Seconds

SIP (161x 33) 81.00 =i00.0

MG-SIP

MG-SIP

MG-SIP

(161 x 33)

(161 x 33)

(81 x 17)

7.48

8.23

8.88

10.79

i1.49

4.02

uniform spacing.

convergence is one
order less than for

nonuniform spacing.

uniform spacing

nonuniform spacing

nonuniform spacing
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CONCLUSIONS

o

Generation of coordinates for regions with highly curved

boundaries requires suitable initial conditions; locally

self-similar equations provide an excellent non-iterative

initial solution.

Generation of appropriate Dirichlet boundary conditions even

with non-zero forcing functions enhances solution convergence

rate.

Use of implicit numerical solution procedures together with

the multigrid iteration technique constitutes an effective

method for solution of the nonlinear governing differential

equations with large number of grid points.

An adaptive coordinate distribution is formulated for the

breaking surface-wave problem with a reentrant boundary;

solutions are presently being obtained for a free surface

wave starting from an initial sinusoidal form and under-

going the breaking phenomenon.



A Two Dimensional Mesh Verification Algorithm

R. Bruce Simpson

Department of Computer Science

University of Waterloo

Water]oo, Ontario, Canada.

Abstract

A finite element mesh is commonly represented in a program by

li_ n_ _t a _ _ 11_v r_A_÷_ ^l .... _ "-_ ..... k .... _ ..... _-_-

In general, these lists describe a collection of triangles. Whether the

triangles form proper mesh for a region or not, i.e. whether they 'tile'

a region, is data dependent in a non obvious way. This paper specifies

a set of conditions on the triangles (i.e. on the list data) which ensure

that the triangles tile a region and which also can be verified by an

algorithm which is referred to in the title, and which is claimed to be

of reasonable efficiency.



Basic List Representation of a Mesh

The mesh verification algorithm assumes that the collection

of triangles is described by three lists as shown in the following

small example.

Vertex

Index

1
2
3

4
5

6
(7

8

9
ZO
11

12

13
14
15

16

Coordinates EleFaent incidences Boundary References

x-y coordinates index vertex indices index references

2.00 1.00 l 1 2 3 l 1
_..00 2.00 2 2 4 3 2 2

1.00 1.00 3 2 5 4 3 3
1.O0 2.00 _----_5 6 4 4 4

2.00 3.004_ ___8 6 5 61.00 3.00 6 6 6

_.oo_._o_q-Z _ _ _o _ _
z.00 4.00 _ ,B zO 2 z s S
3.00 1.00 \/ _9 iZ z2 s 9 9

3.00 2.00 & /io 127_j___s- 111_111o_.oo_.oo ,_ _ _____3.00 4.00 I \ 12 14 zo 9, ___2 iI
4.00 1.00 J I 13 14 15 i0 13 13

4.oo 2.oo I I z4 Is zz zo 14 14
4.00 3.00 l 1 15 15 16 ii 15 15

4.00 4.00 If I 16 16 12 ii 16 16

4
' I
I i

3
2
1
2 indicates a
1 boundary
2 edge starts
3 at --_

3

1

lj

/ _/ v ,0 i I

® //
..s ,' ,'

/

©

@

1

3
1 ,2 't,



C1)

CONDITIONS

THE TRIANGLE VERTICES ARE SPECIFIED IN COUNTER CLOCKWISE ORDER

2)

C 3)

V (1, K) V (2,,K)

D.E

THE ITH EDGE OF E (K) IS THE ONLY EDGE JOINING ITS

END POINTS (BOUNDARYELF_t.'ENT)

THERE IS EXACTLY ONE ELF_PENT.,E (_)HAVING THE SAVE

EDGE, IN THIS LAI-IERCASE, THE DIRECTIONS OF THIS

LINE SEGt,IENTAS EDGES OF E (K) AND E (_.)MUST BE

DIFFERENT,

No BO_,E)ARYEDGE INTERSECTSFORE THAN ONE ELF3,1EITF,EXCEPT

AT ITS END POINTS,

C 4) A VERTEX CAN RAVE AT MOST ONE BOUNDARY EDGE DIRECTED A_'IAY

FR_I IT,



IMPLICATIONS

1)MESH BOUNDARY EDGES FORM A SET OF DISJOINT, ORIENTED, SIMPLE CLOSED

CURVES

C1, C2, ,,,, CK - MESH BOUNDARY CURVES

2) EACH CURVE OF BOUNDED INTERIOR DEFINES A CONNECTED REGION, THE

BOUNDARY OF THIS REGION IS COMPOSED OF MESH BOUNDARY CURVES

3)R

J X

(AssuME1 CURVE OF BOUNDED INTERIOR - C1)

DEFINE R z h (INTERIOROF CI)

I=1 (CONNECTIVITYK)

= L/ E (J)
J=l

4) IF P IS NOT AN ELEMENT EDGE

P LIES IN EXACTLY ONE ELEMENT,



Small Example Invalid Mesh on Hollow Square

@

@

@ @ @

t/2

/
/

\@!/_

@

.@

Coordinates of vertex 13 changed to (2.5, 2.5)

Section of Mesh Verification Algorithn Detailed Error Report

MESH VERIFICATION ERROR

INTERSECTING BOUNDARY EDGES -

EDGE FROM VERTEX 13 AT ( 2.50, 2.50)

EDGE FROM VERTEX 2 AT ( 2.00, 2.00)

TO VERTEX 9 AT ( 3.00, 1.00)

TO VERTEX I0 AT ( 3.00, 2.00)

MESH VERIFICATION ERROR

INTERSECTING BOUNDARY EDGES -

EDGE FROM VERTEX 14 AT ( 4.00, 2.00)

EDGE FROM VERTEX i0 AT ( 3.00, 2.00)

TO VERTEX 13 AT ( 2.50, 2.50)

TO VERTEX ii AT ( 3.00, 3.00)

FROM BDSCAN, NO. OF BOUNDARY CURVES= 2

MESH VERIFICATION ERROR

ELEMENT ii APPEARS TO HAVE VERTICES LISTED IN WRONG ORDER

X= 3.000000E 00 Y= 1.000000E 00

X= 2.500000E 00 Y= 2.500000E 00

X= 4.000000E 00 Y= 2.000000E 00

DET = -2.000000E 00

MESH CHECK ENCOUNTERED 3 ERRORS
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Conformal Mappings of Multiply Connected Regions

onto Regions with Specified Boundary Shapes

by Andrew N. Harrington

School of Mathematics

Georgia Institute of Technology

a2 A1 2

a3 A4 A 3

f

f conformal f(a.) = Aj, Y-3 -_ FJ J

The author has developed and implemented a numerical procedure to

compute the conformal mapping of a given n-tuply connected region onto

a region with any specified boundary shapes and with several possible

normalizations. If we start with a region whose outer boundary is a

rectangle, we may arrange that the outer boundary of the image region is

also a rectangle, and the vertices map to vertices. We may chose the

inner boundaries to map to rectangles or to any other shapes.



Wemay also consider unboundedregions and find a mapping normalized

at _ z + O(i/z). Wemay chose the boundaries of the image region to be
circles or any other shapes.



Method

Thoughwe may specify boundary shapes and orientations arbitrarily,

the proper translation and magnification parameters must be calculated to

determine the image domain and the mapping. For example, in order to find

a conformal mapping between n-tuply connected regions R and S containing

with f(co) = oo, we must satisfy conditions on GR and GS, the analytic
completions of the Green's functions for R and S with pole at oo. Wemust

have

GR(rj) = Gs(Sj) j = i, 2, ... n-1

where r. and s., j = I 2, ... n-l, are the critical points for GS and GRJ J '
labeled in the figure. Using Symm'smethod to approximate Green's functions

one may easily calculate the appropriate parameters. Then Gs(f(z)) = GR(Z).

t "_. s i
I'_ r \ '_J,)) " i ' _ |

The dotted curves are the level curves of Re GR and Re G S which

branch at the critical points.
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ABSTRACT

The General Interpolants Method (GIM) code solves the multi-

dimensional Navier-Stokes equations for arbitrary geometric domains.

The geometry module in the GIM code generates two- and three-

dimensional grids over specified flow regimes, establishes boundary

condition information and computes finite difference analogs for use in

the GIM code numerical solution module. The technique can be classified

as an algebraic equation approach.

The geometry package uses multivariate blending function interpola-

tion of vector-values functions which define the shapes of the edges and

surfaces bounding the flow domain. By employing blending functions

which conform to the cardinality conditions the flow domain may be mapped

onto a unit square (2-D) or unit cube (3-D), thus producing an intrinsic

coordinate system for the region of interest. The intrinsic coordinate

system facilitates grid spacing control to allow for optimum distribution

of nodes in the flow domain.

The GIM formulation is not a finite element method in the classical

sense. Rather, finite difference methods are used exclusively but with the

difference equations written in general curvilinear coordinates. Trans-

formations are used to locally transform the physical planes into regions

of unit cubes. The mesh is generated on this unit cube and local metric-

like coefficients generated. Each region of the flow domain is likewise

transformed and then blended via the finite element formulation to form

the full flow domain. In order to treat "completely-arbitrary _' geometric

domains, different transformation functions can be employed in different

regions. We then transform the blended domain to physical space and solve

the Cartesian set of equations for the full region. The geometry part of the

problem is thus treated much like a finite element technique while integration

of the equations is done with finite difference analogs.



BUILDING BLOCK CONCEPT

The development is done in local curvilinear intrinsic coordinates based

on the following concepts:

• Analytical regions such as rectangles, spheres, cylinders,

hexahedrals, etc., have intrinsic or natural coordinates.

• Complex regions can be subdivided into a number of

smaller regions which can be described by analytic

functions. The degenerate case is to subdivide small

enough to use very small straight-line segments.

• Intrinsic curvilinear coordinate systems result in

constant coordinate lines throughout a simply

connected, bounded domain in Euclidean space.

• The intersection of the lines of constant coordinates

produce nodal points evenly spaced in the domain.

• Intrinsic curvilinear coordinate systems can be pro-

duced by a univalent mapping of a unit cube onto the

simply connected bounded domain.

Thus, if a transformation can be found which will map a unit cube uni-

valently onto a general analytical domain, then any complex region can be

piecewise transformed and blended using general interpolants.

Consider the generalhexahedral configuration shown. The local intrinsic

coordinates are _ql' _2' 133 with origin at point PI" The shape of the geometry

is defined by

• Eight corner points, P.
I

• Twelve edge functions, N i

• Six surface functions, S.
1

This shape is then fully described if the edges and surfaces can be specified

as continuous analytic vector functions Si{x,y,z), Ei{x,y,z).



BUILDING BLOCKCONCEPT
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GENERAL INTERPOLANTFUNCTION

Based on the work of Gordon and Hall we have developed a general

relationship between physical Cartesian space and local curvilinear intrinsic

coordinates. This relation is given by the general trilinear interpolant shown

on the adjacent figure.

In this equation, _X vector is the Cartesian coordinates

_0]1,_]Z,_ 3) E ]x(nl,_z,_ 3)

Y(q l,_Z,_]3 )

z(_]l,_]2,_q 3)

and Si, E i are the vector functions defining the surfaces and edges, respectively,

and Pi are the (x,y, z) coordinates of the corner points. Edge and surface func-

tions that are currently included in the GIM code are the following:

• EDGES (Combinations of up to Five Types)

Linear Segment

Circular Arc

C onic (Elliptical, Parabolic, Hyperbolic)
Helical Arc

Sinusoidal Segment

• SURFACES (Bounded by Above Edges)

Flat Plate

Cylindr ical Surface

Edge of Revolution

This library of available functions is simply called upon piecewise via input

to the computer code.

With this transformation, any point in local coordinates DI, _]2' I]3 can

be related to global Cartesian coordinates x,y,z. Likewise any derivatives

of functions in local coordinates can be related to that derivative in physical

space.



GENERAL INTERPOLANTFUNCTION

_( (ffl,D?)r; 3) =

+ (I-'73)_l + _3s'3

E5 _- (l-r)l) (l-)]Z) - (I-)11) @Z E8 - )11 (1-FIZ) E6

__, _, -g
- )!i )!Z E7 - (!-_}1) (1-:;3) E4 - (l-rll) F/3 _lg
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INTERNALFLOWGRID

(Axisymmetric RocketNozzle)

The grid shown was used to compute the flow in a model of the Space

Shuttle engine using the GIM code. The mesh is stretched in the radial direc-

tion to cluster points near the wall and stretched axially to place points near

the throat of the nozzle. Only a portion of the complete grid is shown for

clarity and illustration. The grid shows the general format used by the GIM

code for internal, two-dimensional flows in non-rectangular shapes.



INTERNAL FLOWGRID

(Axisymmetric Rocket Nozzle)
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EXTERNALFLOW GRID

(Two-Dimensional Blunt Body Flow)

This figure shows a polar-like grid used for computing external flow

over a blunt body. The body surface is treated [nviscidly, and thus does

not require an extremely tight mesh. The outer boundary is the freestream

flow. The grid illustrates the GIM code technique for two-dimensional ex-

ternal flows using a polar-like coordinate system.



EXTERNALFLOWGRID

(Two-Dimensional Blunt Body Flow)



EXTERNALFLOW GRID

(Non-Orthogonal Curvilinear Coordinates)

The nodal network for the external flow over an ogive cylinder illustrates

the capability of the GIM code geometry package to stretch the nodal distribu-

tion. The grid is very compact in the leading edge region and greatly expanded

in the far field areas. The axial points follow the body surface and could gen-

erally be called "body-oriented coordinates" in the nomenclature of the l_tera-

ture. The radial grid lines are not necessarily normal to the lateral lines or

to the body surface. The GIM code, through its "nodal-analog" concept can

operate on this general non-orthogonal curvilinear grid.



EXTERNALFLOWGRID

(Non-Orthogonal Curvilinear Coordinates)



THREE-DIMENSIONALGRID

(Simple Rectilinear Coordinates)

Supersonic flow in expanding ducts of arbitrary cross section is a common

occurrence in computational fluid dynamics. This figure illustrates a simple

grid for a three-dimensional duct whose cross section varies sinusoidally with

the axial coordinate. The "flop" wall and the "front '_wall have this sinusoidal

variation while the "bottom" and "back" walls are flat plates. The grid shown

was used to resolve the expandlng-recompressing supersonic flow including the

intersection of the two shock sheets.



THREE-DIMENSIONAL GRI D

(Simple Rectilinear Coordinates)



THREE-DIMENSIONAL GRI D

(Pipe Flow in a 90 deg Elbow Turn)

There are numerous flow fields of interest which contain a sharp turn

inside a smooth pipe. The GIM code has treated certain of these for applica-

tion to jet deflector nozzle flow in VTOL aircraft. The portion of a grid shown

in the adjacent figure was used for this calculation.

The 90 deg elbow demonstrates the capability to model three-dimensional

non-Cartesian geometries. The internal nodes were emitted for clarity. The

elbow grid was generated by employing edge-of-revolution surfaces with circular

arc segments as the edges being revolved.



THREE-DIMENSIONAL GRID

(Pipe Flow in a 90 deg Elbow Turn)



GRID FOR SPACE SHUTTLEMAIN ENGINE

(Hot Gas Manifold Geometry Model)

The recent problems encountered with the Space Shuttle main engine

tests have resulted in a GIM code analysis of the system. The "hot gas mani-

fold" is a portion of this analysis for the high pressure turbopump system.

The grid shown in the adjacent figure was used for this calculation. Only a

small number of nodes are shown for clarity; the full model consists of approx-

imately 14,000 nodes. The extreme complexity of this geometry illustrates

the necessity of using a GIM-like technique. Transforming this case to a

square box computational domain is, of course, impossible. The results of

the GIM code analysis agrees qualitatively with flow tests that have been run

on the hot gas manifold.

Hot Gas Manifold Configuration



GRID FORSPACESHU]'I'LE MAIN ENGINE

(Hot Gas Manifold Geometry Model)

Outer Duct

Inner Duct



SUMMARY

• Finite difference grids can be generated for very general con-

figurations by using multivariate blending function interpolation.

• The GIM code difference scheme operates on general non-

orthogo(_al curvilinear coordinate grids.

This scheme does not require a single transformation of the

flow do:main onto a square box. Thus, GIM routines can indeed

treat arbitrary three-dimensional shapes.

Grids generated for both internal and external flows in two and

three dimensions have shown the versatility of the algebraic

approach.

The GIM code integration module has successfully computed

flows on these complex grids, including the Space Shuttle

main engine turbopump system.

• Plans for future application of the code include supersonic flow

over missiles at angle of attack and three-dimensional, viscous,

reacting flows in advanced aircraft engines. Plans for future

grid generation work Lnclude schemes for time-varying networks

which adapt themselves to the dynamics of the flow.
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Introduction"

One of the major problems related to transonic flow prediction

about realistic aircraft configuration is the generation of a suitable

grid which encompasses such configurations. In general, each aircraft

component (wing, fuselage, nacelle) requires a grid system that is

usually incompatible with the grid systems of the other components;

thus, the implementation of finite-difference methods for such

geometrically-complex configurations is a difficult task.

,,,T-,k_,,,_presentation a new approach is developed to treat such a

problem. The basic idea is to generate different grid systems, each

suited for a particular component. Thus, the flow field domain is

divided into overlapping subdomains of different topology. These

grid systems are then interfaced with each other in such a way that

stability, convergence speed and accuracy are maintained.



Model :

To evaluate the feasibility of the present approach a two-dimensional

model is considered (figure I). The model consists of a single airfoil

embedded in rectangular boundaries, representing an airfoil in a wind

tunnel or in free air. The flow field domain is divided into two

overlapping subdomains, each covering only a part of the whole field. The

inner subdomain employs a surface-fitted curvilinear grid generated by an

elliptic grid-generator (ref. I), while the outer subdomain employs a

cartesian grid. The overlap region between the two subdomains is bounded

by the outer boundry of the curvilinear grid and the inner boundary of the

cartesian grid.

l , Holst, T. L., "Implicit Algorithm for the Conservative Transonic Full-

Potential Equation Using an Arbitrary Mesh," AIAA J., Vol. 17, No. I0,

October 1979
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Figure I. Composite grid for an airfoil



Approach :

The figure shows the two subdomains (A,B) of the flow field;

each has a grid adapted to suit its geometry. The flow in both

subdomains is governed by the transonic full-potential equation.

While a Neuman-type boundary condition is used at the inner bound-

ary of subdomain B (overlap inner boundary), a Dirichlet-type

boundary condition is used at the outer boundary of subdomain A

(overlap outer boundary). These boundary conditions are updated

during the solution process. The implicit approximate factoriza-

tion scheme is used in both grid systems. The code of ref. 1 is

modified to fit into the present scheme.

The solution process is performed in cycles, starting by

solving for the flow field in subdomain A, then switching after a

number of iterations to solve for the flow field in subdomain B.

During each cycle the overlap boundary conditions are updated by

using two dimensional second order Lagrangian interpolation scheme.

This process is then repeated until convergence is achieved in both

subdomains.
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Comparison with a homogeneous 9rid:

The results of the present method are compared with the results

obtained from using one homogeneous grid for the entire flow field

(ref. l). In all the test cases considered, a standard grid with

(31 x 147) points and a circular outer boundary located 6 chord-

length away from the airfoil are used.



Figure 3. Uniform grid for an airfoil (ref. I)



Computed Results:

Results of the present method are compared with the results

obtained from the code of ref. I, Figures 4 and 5 display the

pressure coefficient distribution for a NACA-O012 airfoil. The values

of the different parameters affecting the performance of the numerical

shceme are listed in table I. The results are in good agreement for

both subcritical and supercritical cases; savings in computing time are

achieved by reducing the size of the flow field covered by the curvi-

linear grid (subdomain A).

Curvilinear grid

Cartesian grid

% cpu time reduction
as compared to TAIR
Code

location of subdomain
B outer boundary

Location of subdomain
B inner boundary

Location of subdomain
A outer boundary

number of cycles for

convergence

Code of Ref. 1

TAIR Code

31 x 147 15 x 147

30 x 30

30%

6 chord-

length

21 x 147

30 x 30

I0%

4 chord-
length

I0

Present Method

1 chord-

length

1 chord-

length

2 chord-
length

6 c hord-
length
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Curvilinear grid

Cartesian grid

% cpu time reduction
as compared to TAIR
Code

location of subdomain
B outer boundary

location of subdomain

B inner boundary

location in subdomain

A outer boundary

number of cycles for
convergence

Code of Ref. 1

TAI R Code

31 x 147 18 x 147

30x 30

20%

6 chord-
Iength

1 chord-

length

2 chord-
Iength

Present Method

14 x 147

50 x 50

10%

I/4 chord-
length

1 chord

length

1512

6 chord-
length
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Figure 5. Comparison of pressure coefficient for NACA-O012 (M_ = .8,
_=0.)



Flow Field Topology :

The extent of the overlap region between the different grids and

the relative size of each subdomain are the main factors affecting

the accuracy and convergence speed of the present scheme. The figure

shows the flow field topology for several test cases. In these cases

the overlap extent and subdomain sizes are varied to determine their

optimum values that will minimize the computing effort, while maintain-

ing a reasonable accuracy.
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Overl a p arra ng ement:

Test Cases with different grids-arrangement are compared to

determine the optimum choice for the extent of the overlap region.

A work factor w [number of iterations for convergence x number

of grid points (curvilinear grid)] is taken as a measure of the

computing effort. Numerical results show that increasing the ex-

tent of the overlap region decreases the number of iterations for

convergence, however, this also increases the computing effort.

To minimize the computing time the cartesian grid should overlap

15-25% of the curvilinear grid, also the inner boundary of the

cartesian grid should not be located less than 0.25 chord-length

away from the airfoi I.
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Figure 7. Effect of overlap parameters on work factor w (NACA-O012,
M_= .8, _ = 0.)



Computed Results:

The use of nonoptimal parameters for grids arrangement (overlap

extent, relative grid sizes) can produce inaccurate results and/or

slow down convergence. The Peaky pressure coefficient distribution

shown in the figure is corrected by increasing the extent of the

overlap region

Curvil inear grid

Cartesian grid

location of subdomain
B outer boundary

location of subdomain

B inner boundary

location of subdomain
A outer boundary

Code of Ref. 1

TAIR Code

31 x 147 10 x 147

30 x 30

6 chord-
length

1/4 c ho rd-

1.5 chord-

Present Method

15 x 147

40 x 40

6 chord-

length

I/4 chord-

1 chord-
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Computed Results:

Figures 9 and I0 display the pressure coefficient distribution

for two lifting cases. The evolution of circulation, and hence

lift, is slowed down as the solution process alternates between the

different grids. This dealt with by decreasing the number of iter-

ations performed in each grid.

Curvilinear grid

Cartesian grid

% cpu time reduction as
compared to TAIR Code

i

location of subdomain B

outer boundary

location of subdomain B

inner boundary

location of subdomain A
outer boundary

lift coefficient

number of cycles for
convergence

Code of Ref. 1

TAIR Code

31 x 147

O. 334

Present Method

15 x 147

30 x 40

39%

6 chord-length

1 chord-length

3 chord-length

0.337

16
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Curvil inear grid

Cartesian Grid

rnll limp r_dlJction as

compared to TAIR Code

location of subdomain B
outer boundary

location of subdomain B

inner boundary

location of subdomain A
outer boundary

i i

lift coefficient

number of cycles for
convergence

i

Code of Ref. 1

TAIR Code

31 x 147

Present Method

21 x 147

30 x 30

6 chord-length

2 chord-length

4 chord-length

0.574 • 584

14
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Errors in Sonic line position :

Should the shock wave extend into the overlap region, the

interpolation process can produce errors in the shock location

and strength. Comparisons of the results of the present method

with those of a homogeneous grid shows that the maximum relative

error did not exceed 1.5%.
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Conclusion:

A method for interfacing grid systems of different topology is

developed. This offers a new approach to the problem of transonic

flow prediction about multiple-component configurations. The method

is implemented in a 2-D domain containing two grid systems of differ-

ent topology. The numerical scheme in the present method proved to

be stable and accurate. Savings in computer time and/or storage is

achieved by the proper choice of the overlap region between the differ-

ent grids.
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Abstract

An application of a simple numerical technique
which allows for the rapid construction of
orthogonal coordinate systems about two dimen-
sional and axisymmetric bodies is presented.
This technique which is based on a "predictor-
corrector" numerical method is both simple in
concept and easy to program. It can be used
to generate orthogonal meshes which have unequally
spaced points in two directions. These orthogonal
meshes in their transformed computational plane
are, however, equally spaced so that the
differencing for the metric coefficients and the
fluid dynamic equation terms can be easily
determined using equally spaced central finite
differences. Solutions to the Navier Stokes
equations for flow over blunt bodies with
reverse curvature are presented. The coupling
of the time dependent fluid dynamic equations
and the coordinate generator worked well with
no undersirable effects noted.
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Flowfield Geometrical Relationships

The numerically generated orthogonal coordinates
are determined from the original cartesian coordinate

systems description of the body surface and outer

boundary. Taking the origin of the X,Y system as

lying inside the body to be described, the surface

distance _, which forms one of the transformed

orthogonal coordinates, can be easily calculated by

defining _ as zero at origin of the region of

interest and increasing to unity at the end of the

region (nondimensionalized surface distance). The

other orthogonal coordinate, _, is taken as zero on

the body surface and as unity on the outer boundary.

Thus the region of interest is transformed into a

nondimensiona! square_



SHOCK--_

Level line construction.



Level Line Construction

The level lines between the outer boundary and the

body surface can be constructed arbitrarily, however,

the easiest approach is to construct the level lines

along straight lines connecting corresponding points

on the body and the outer boundary. The mesh points

on the outer boundary are not the final mesh points

but initial values used only to set up the level lines.

The actual mesh points will result from the numerical

generation of the orthogonal normal lines. The spacing

of the level lines is arbitrary and highly stretched

meshes can be easily constructed.
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Normal Line Construction Technique

Once the level lines have been determined, the normal

lines are constructed numerically so that an orthogonal

system is defined. The approach to the construction of

the normal lines is the one given by McNally which uses

a simple "predictor-corrector" technique analogous to

the trapezoidal integration method of numerical inte-

gration. In this technique, the solution is first

predicted from the level line at a known point by using

the Euler method. Once the predicted point on the next

level line is obtained, the slope at that point is calcu-

lated and a new predicted point is obtained using this

slope. The actual solution is then a combination of
these two solutions, i.e. the final X,Y values are an

average of the predicted and corrected ones.
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Typical Coordinate Mesh Construction

Starting on the body, the normal line construction

technique proceeds point by point along a level
line until all normals on that level have been

constructed. The solution then proceeds to the

next level and the process is continued until the

outer boundary is reached. Thus the complete

mesh system is numerically generated in a simple

straight forward, non iterative, process. Since

the computational plane (_,D) is an equally spaced

rectangular region, the metric coefficients can be

determined from the completed mesh system using

equally spaced finite difference relations. Fourth
order accurate difference relations are recommended

as they provide for smoothly varying metric coeffi-
cients.



SHO0

SOrbIC LINE--_

Shock and sonic line for X : .4.
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Shock and Sonic Line

Solutions to the laminar flow Navier-Stokes equations

were obtained for flow over bodies with blunted noses,

including reverse curvature. These bodies were

generated using the following cubic forebody generator,

X=Xo +A 1 y2 +A2y3

where Xodetermines the nose offset while the coefficients

A] and A2 are determined such that the forebody nose
s_ction joins smoothly to the conical flank. This

solution was run for a free stream Mach number of 10.33

and Xo=.4. The shock shape and sonic line are typical

of the solution for bodies with very blunt nose regions.
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Converged Coordinate System

The converged coordinate system shown for Xo=.4 is
composed of 15 transverse stations and 31 normal

stations. The normal direction spacing is highly

stretched to provide resolution for the boundary layer.

There is only mild stretching in the transverse

direction to provide for improve stagnation region
resolution. There were no undesirable effects noted

in the coupling of the viscous flow calculations with

the coordinate generation.
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ABSTRACT

This presentation describes a three-dimensional body-fitted coordi-
nate system developed for use in the calculation of inviscid flows over

ablated, asymmetric reentry vehicle nosetips. Because of the potential
geometric asymmetries, no standard coordinate system (e.g., spherical,
axisymmetric reference surface-normal) is capable of being closely aligned
with the nosetip surface. To generate a 3-D, body-fitted coordinate
system an analytic mapping procedure is applied that is conformal within
each meridional plane of the nosetip; these transformations are then

coupled circumferentially to yield a three-dimensional coordinate system.
The mappings used are defined in terms of "hinge points", which are
points selected to approximate the body contours in each meridional
plane. The selection of appropriate hinge points has been automated to
facilitate the use of the resulting nosetip flow field code.



PROBLEM DEFINITION

CALCULATION OF SUPERSONIC/HYPERSONIC INVISCID FLOWS OVER ASYMMETRIC ABLATED

REENTRY VEHICLE NOSETIPS

ASYMMETRIC ABLATED NOSETIP SHAPE

APPROACH

e FINITE-DIFFERENCE SOLUTION OF UNSTEADY EULER EQUATIONS

e STEADY FLOWSOLUTION SOUGHTAS THE ASYMPTOTIC LIMIT OF

UNSTEADYFLOW



PROBLEM DEFINITION

The goal of this effort is the development of a procedure for cal-
culating supersonic/hypersonic inviscid flows over asymmetric ablated
reentry vehicle nosetips. These asymmetric shapes, such as illustrated
in this figure, result from asymmetric transition on the nosetip, which
occurs at the lower altitudes during reentry (i.e., below 50 KFT). Be-
cause these shapes occur in the high Reynolds number, turbulent regime,
with thin boundary layers, an inviscid solution is capable of accurately

predicting the pressure forces on the nosetip. The nosetip flow field
solution is also required to provide the required initial data for after-
body calculations; this coupling of nosetip and afterbody codes allows
accurate prediction of the effects of the nosetip shape on the afterbody
flow field.

The flow field code developed is a finite-difference solution of
the unsteady Euler equations in "non-conservation" form (i.e., the de-
pendent variables are the logarithm of pressure, P, the velocity compo-
nents, u,v,w, and the entropy, s). In this approach the steady flow
sn!ution is _n_,gh÷...... as +h_.._.....a_j,,,_,_+_limit of a1_uT_st_adyflow, starting
from an assumed initial flow field.



COORDINATE SYSTEM REQUIREMENTS

OPTIMUM COORDINATE SYSTEM FOR NUMERICAL FLOW FIELD CALCULATIONS

IS BODY-ORIENTED

COORDINATETRANSFORMATIONSOUGHTTHAT:

1.) ALIGNS COORDINATESURFACESWITH BODY

SURFACE

2.) IS ANALYTIC (SOLUTION OF PDE'S NOT REQUIRED

TO DEFINE TRANSFORMATION)

3.) CAN BE READILY AUTOMATED (TO MINIMIZE INPUTS

REQUIRED FROM USER)



COORDINATE SYSTEM REQUIREMENTS

It is well known that accurate numerical calculation of fluid flows

requires the use of a coordinate system closely aligned with the principal
features of the flow. For the nosetip problem this requirement would be
satisfied by a coordinate system which closely follows the body shape and,
hence, the streamlines of the flow. Because of the asymmetric nosetip
geometries being considered, standard coordinate systems (e.g., spherical,
axisymmetric reference surface-normal) are incapable of being aligned with
the nosetip surface at all points. Thus, a coordinate transformation is
sought that will align the coordinate system with an arbitrary nosetip
geometry. By requiring the transformation to be in analytic form, the
need of solving partial differential equations to define the transformation
can be avoided. Finally, the transformation should be in a form that
readily lends itself to automated definition, minimizing the inputs re-
quired of a user of the code.



COORDINATE TRANSFORMATION

(X,y,@) CYLINDRICAL COORDINATES IN PHYSICAL SPACE

(_,n,o) COORDINATESIN TRANSFORMEDSPACE

TRANSFORMATIONOF CIRCUMFERENTIAL COORDINATENOT REQUIRED

(NOSETIPS INITIALLY AXISYMMETRIC); ASSUMETRANSFORMATION

TAKES THE FORM

: _ (x,y,@)

q :n (x,y,@)

e=@

IN A MERIDIONAL PLANE (@ = CONSTANT), THE TRANSFORMATION

REDUCESTO

: _ (x,y)

n : n (x,y)



COORDINATE TRANSFORMATION

The nosetip geometry is defined in an (x,y,@) cylindrical coordinate

system, and a mapping to a (_,q,Q) transformed coordinate system is sought.
Since current reentry vehicle nosetips are initially axisymmetric (prior
to ablative shape change), it is assumed that nosetip cross-sections re-
tain some "axisymmetric" character during reentry. Thus, no transforma-
tion of the circumferential coordinate is required, and B = ¢ is assigned.

(This transformation can readily be generalized to B = f(¢) if required
for other applications of this approach.) Within a ¢ = constant merid-

ional plane, the transformation reduces to the two-dimensional form
= _(x,y), n = n(x,y). Conformal transformations from the z = x+iy to

the_= C+in plane are desirable, ensuring that an orthogonal (_,n) grid
maps back onto an orthogonal grid in the (x,y) plane.



DEFINITION OF TRANSFORMATION

INDEPENDENTLY IN EACH MERIDIONAL PLANE, DEFINE A SEQUENCE

OF CONFORMAL TRANSFORMATIONS

zj+ 1 - I = [zj - hj+l,j] j = 1,2,....JA

zj = xj + iyj (j = 1 IS PHYSICAL SPACE)

= ith''HINGE POINT" IN jth SPACEhi,j

HINGE POINTS ARE SELECTED TO APPROXIMATE BODY GEOMETRY

Yl

hl,l

[]

2,1

/ . [] h4,1

f hi] h3,l

0 2,l
xI

HINGE POINT DEFINITION



DEFINITION OF TRANSFORMATION

The approach used to define the coordinate transformations is a
modification of the "hinge point" approach of Moretti*. The mapping
is defined as a sequence of conformal transformations of the form

zj+1 - I = [zj - hj+l,j]_j

where zj = xj +iyj (j = 1 is physical space) and hi,j is the ith hinge
point in theVzj plane. The hinge points in the physical (Zl) plane are
selected to approximately model the body geometry. By mapping the
hinge points sequentially onto the horizontal axis, the image of the
body surface will then be a nearly horizontal contour.

*Moretti, G., "Conformal Mappings for Computations of Steady, Three-

Dimensional, Supersonic Flows," Numerical/Laboratory Computer Methods
in Fluid Mechanics, ASME, 1976.



SEQUENCE OF TRANSFORMATIONS
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SEQUENCE OF TRANSFORMATIONS

In the jthmapping of the sequence, the transformation is centered

around the hinge point hj+l,j. The mappings have the property of keep-
ing the hinge points, hi,j (i_j+l) on the horizontal axis, while mapping
the hinge point hj+2,j onto the horizontal axis. Thus, after JA trans-
formations, all JA+2 hinge points in the JA+I space will lie on the
horizontal axis. (Each mapping in this sequence may be considered a
"point-wise Schwarz-Christoffel" transformation.) This figure illustrates
the sequence of transformations for JA = 3.



TRANSFORMATIONS - CONTINUED

MAP CENTERLINE ONTOVERTICAL AXIS WITH

ZJA+2 = (ZJA+l - h2,JA+l )1/2

ALLOW FOR SIMPLE STRETCHING (REQUIRED FOR CENTERLINE

TREATMENT) WITH

= _ + in = azjA+2

RESULTING BODY CONTOUR:

lq

[3

_n = b(_)

{i]



TRANSFORMATIONS - CONTINUED

In order to establish a grid suitable for flow field calculations
when the image of the body contour is a nearly horizontal surface, it is
desirable to have the image of the centerline external to the body lie
along the vertical axis. This is achieved using an additional conformal
transformation, centered around the second hinge point, of the form

= - h _1/2
ZjA+ 2 (ZjA+ 1 2,JA+I _ -

The last transformation is a simple stretching (which is also conformal):

=C + in = azjA+2

(This stretching is used in the calculation procedure along the center-
line.) This figure illustrates the body contour resulting in the (-plane
for the case of a sphere with JA = 3, where the body surface is defined
as n : b(_).



COMPUTATIONAL TRANSFORMATION

DESIRE GRID POINTS EQUALLY SPACED IN _ ALONG BODY, IN n BETWEEN

BODY AND SHOCK, AND IN e CIRCUMFERENTIALLY

e Y = _ Z = n-b(_,e)
X - 2_ _ c(C,e,T)-b(_,e)
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PHYSICAL SPACE
xI

BODY

TRANSFORMED SPACE

n : c(C,e,'_)

n = b(_,e)



COMPUTATIONAL TRANSFORMATION

For the flow field calculation it is desirable to have equally

spaced grid points. Thus, a transformation to a computational coordinate
system (X,Y,Z) is used, in which grid points are equally spaced circum-
ferentially in B, longitudinally in _ within each meridional plane, and
in n between the body and the shock. It is important to note that the
(X,Y,Z) system is not orthogonal, and that the comPutational transforma-
tion varies with time as the bow shock position varies during the time-
dependent calculation. These sketches illustrate the computational grids
resulting in a meridional plane in both physical (z = x÷iy) and trans-
formed (_ = C+in) space for a typical ablated nosetip contour (with the

shock layer thickness exaggerated for clarity).



PARAMETERS OF THE TRANSFORMATION

REQUIRED IN WRITING GOVERNINGEQUATIONS IN TRANSFORMED

COORDINATES

BE _ Ge i(_
g - Bz

: _(log g)

= _x + inx = -i_y + ny

CAN BE EVALUATEDANALYTICALLY

CIRCUMFERENTIAL PARAMETERS OF THE TRANSFORMATION

_@,g@ CAN BE EVALUATED ANALYTICALLY IF EACH MERIDIONAL

PLANE HAS THE SAME NUMBEROF HINGE POINTS, ASSUMING INTER-

POLATING FUNCTIONS FOR hi,j(@)

ALTERNATIVELY, EVALUATE FROMTAYLOR SERIES EXPANSIONS:

_2-_1-g(z2-z 1)

_ = E_+ in_ = _2__ I

g2-gl-g 2 @(z2-2 I)

g@ = @2_@1

( )I + (X-AX,Y,Z), ( )2 ÷ (X+AX,Y,Z) IN COMPUTATIONAL MESH



PARAMETERS OF THE TRANSFORMATION

In transforming the governing equations from physical to the (X,Y,Z)
computational coordinates, certain derivatives of the transformation are

required. Because the transformation has been defined in analytic form,
these derivatives can readily be evaluated analytically and are functions
only of the hinge point locations. Within a meridional plane (@ = constant),
the required derivatives are g = BS/Bz and @ = B(log g)/B_. Circumferen-
tially, the independent transformations in each meridional plane can be
coupled to produce a three-dimensional transformation by assuming that

hinge point locations can be expressed as hi,j(¢). The required circumfer-
ential parameters of the transformation, _¢ and g@, can be evaluated
analytically if each meridional plane has the same number of hinge points

and assuming the form of interpolating functions for hi,j(@). Alterna-
tively, it has been found to be sufficient to evaluate 5m and gm from
Taylor series expansions using data at computational (X,_,Z) me½h points,
with the forms of the resulting expressions shown in the figure.



AUTOMATIC GENERATION OF HINGE POINTS

_Yl

Lx l

HINGE POINTS LOCATED DISTANCE 6 ALONG INWARDBODY NORMALS, FROM

BODY POINTS EQUALLY SPACED IN WETTEDLENGTH

ONLY INPUT REQUIRED OF USER IS NUMBEROF HINGE POINTS TO BE

USED IN EACHMERIDIONAL PLANE



AUTOMATIC GENERATION OF HINGE POINTS

To simplify the application of this coordinate transformation to the
as_nT_etricnosetip flow field problem, the selection of hinge points that
define the transformations has been automated. Within each meridional

plane to be computed, body normals are constructed at points equally

spaced in wetted length along the body profile. The hinge points are then
selected to lie a distance 6 inside the body along these normals. By re-
lating _ to any convenient scale factor for a nosetip geometry, the only
input required of the user of the code is the number of hinge points to
be used. The locations of the first two hinge points (i.e., those that
lie on the x axis) are the same in each meridional plane, in order to

simplify the treatment of the centerline. Typically, no more than nine
hinge points per meridional plane (JA = 7) are necessary for the nosetip
flow field problem.



TREATMENT OF CENTERLINE

AT THE CENTERLINE (y = 0), SCALE FACTORS (g = a¢/az) VARY WITH @

STRETCHING TRANSFORMATIONUSED TO MINIMIZE DISCREPANCIES, WITH

a(@k) _ hl,JA+2(@=O)
h1,JA+2(¢ = @k)

CARTESIAN COORDINATES(Xl,X2,X3) USED IN CENTERLINE ANALYSIS

a a

ax I ax

a a sin @ a
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y a_ aya@
FINITE,

ax 2

a
- cos @_, @ = O, _T

a.y

a - sin _ _ @ _ Tr 3_____
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TREATMENT OF CENTERLINE

The greatest complication encountered in the use of this 3-D coordi-

nate transformation is the extra care that must be taken in treating the
grid points on the centerline. Since the transformations in each merid-
ional plane are independent, the scale factors g = B_/Bz along the
centerline will not be the same in each meridional plane. Thus, one

computational grid point at the centerline will represent different physical
points for each value of ¢ . To minimize these discrepancies, the stretch-

ing transformation _ = azjA+2 is used to ensure that the images of the
first hinge point are coincident in all meridional planes. The remaining
discrepancies are small enough that simple linear interpolations can be
used to account for differences in the scale factors.

In addition to the mapping complications along the centerline, the
governing equations in cylindrical coordinates are singular along y = O.
This difficulty has been avoided by using a Cartesian (Xl,X2,X3) coordinate
system for the centerline analysis. The required Cartesian derivatives
can be expressed in terms of the radial derivative B/@y in cylindrical
coordinates for certain values of @, as shown in this figure. The only
restriction resulting from this analysis is that computational planes must
be located at @ = O, 7/2, 7, and 3_/2.



RESULTING FLOW FIELD CODE

CM3DT (C_ONFORMALM__APPING3-D TRANSONIC)

NOSEI'IP FLOW FIELD CODE

• IDEAL OR EQUILIBRIUM REAL GAS THERMODYNAMICS

• PITCH AND YAW CAPABILITY

• I-DIFFERENCING SCHEMEUSED TO TREAT WEAK EMBEDDED

SHOCKSON INDENTED NOSETIPS

• COUPLEDTO AFTERBODYCODESFOR TOTAL INVlSCID

FLOWFIELD CAPABILITY

• BMO/31S

• NSWC/D3CSS

• STEIN

I 81,00010 CORE STORAGEREQUIRED



RESULTING FLOW FIELD CODE

The 3-D, time-dependent, inviscid nosetip flow field code that was
developed using the 3-D coordinate transformation described here is called

CM3DT (Conformal Mapping 3-D Transonic). This code can treat ideal or
equilibrium real gas thermodynamics, has both pitch and yaw capability,
and is able to treat weak embedded shocks on indented nosetips using the
_-differencing scheme*. To provide total body inviscid flow field capa-
bility, the CM3DT code has been coupled to the BMO/31S**, NSWC/D3CSS+,

and STEIN++ afterbody codes. Complete details on the CM3DT analysis and
results obtained with this code may be found in the following references:

Hall, D. W., "Inviscid Aerodynamic Predictions for Ballistic Reentry
Vehicles with Ablated Nosetips," Ph.D. Dissertation University of Penn-
sylvania, 1979; also, BMO TR to be published.

Hall, D. W., "Calculation of Inviscid Supersonic Flow over Ablated Nose-
tips," AIAA Paper 79-0342, January 1979.

*Moretti, G., "An Old Integration Scheme for Compressible Flow Revisited,
Refurbished, and Put to Work," Polytechnic Institute of New York, POLY-
M/AE Report 78-22, September 1978.

**Kyriss, C. L. and Harris, T. B., "A Three-Dimensional Flow Field Computer
Program for Maneuvering and Ballistic Reentry Vehicles," lOth USNavy
Symposium on Aeroballistics, July 1975; also, Daywitt, J., Brant, D., and
Bosworth, F., "Computational Technique for Three-Dimensional Inviscid Flow
Fields about Reentry Vehicles, Volume I: Numerical Analysis," SAMSO TR-

79-5, April 1978.

+Solomon, J. M., Ciment, M., Ferguson, R. E., Bell, J. B., and Wardlaw,

A. B., Jr., "A Program for Computing Steady Inviscid Three-Dimensional
Supersonic Flow on Reentry Vehicles, Volume I: Analysis and Programming,"
Naval Surface Weapons Center, NSWC/WOL/TR 77-28, February 1977.

++Marconi, F., Salas, M., and Yaeger, L., "Development of a Computer Code

for Calculating the Steady Super/Hypersonic Inviscid Flow around Real
Configurations, Volume I. Computational Technique," NASA CR-2675, April 1976.



CM3DT RESULTS
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CM31)T RESULTS

This figure presents some typical results obtained with the CM3DT
inviscid nosetip flow field code. Shown are comparisons of predictions
to data obtained for the PANT Triconic shape* at M = 5. It is signifi-
cant that attempts to compute the flow over this s_ender shape using a

time-dependent code formulated in a spherical coordinate system were
unsuccessful. CM3DT, with its body-oriented coordinate system, was able
to obtain converged solutions for this shape, with the predictions agree-
ing well with the data, as seen in this figure.

*Abbett, M. J. and Davis, J. E., "Interim Report, Passive Nosetip Tech-
nology (PANT) Program, Volume IV. Heat Transfer and Pressure Distri-
bution on ablated Shapes, Part II. Data Correlation and Analysis,"
Space and Missile Systems Organization, TR-74-86, January 1974.



CM3DT- RUNTIMES

ONA CDCCYBER176, CM3DTREQUIRES0.00045CPSECS/POINT/STEP

FORIDEALGASCALCULATIONSWITH_-DIFFERENCING

• 20% PENALTY INCURRED FOR COORDINATE

TRANSFORMATION(PARAMETERSON MOVING

GRID UPDATEDEVERY i0 TIME STEPS)

• 50% PENALTY INCURRED FOR _-DIFFERENCING

(RELATIVE TO MAC CORMACKDIFFERENCING)



CM3DT - RUN TIMES

On a CDC Cyber 176 computer, the CM3DT inviscid nosetip code with
_-differencing requires approximately 0.00045 CP seconds per grid point
per time step (iteration). Typically, 400-500 time steps are required
to obtain a converged solution. It is estimated that the computer time

required for a solution has been increased by approximately 20% by using
the 3-D coordinate transformation described here, when the parameters
of the transformation on the moving grid are updated every ten time steps.
When compared to the standard MacCormack differencing scheme, the use of
_-differencing scheme increases the run time requirements approximately
50% for this code.
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ABSTRACT

Themultigrid method(MGM)has beenused to numerically solve the
pair of nonlinear elliptic equations commonlyused to generate two-
dimensional boundary-fitted coordinate systems. Twodifferent geometries
are considered: one involving a coordinate system fitted about a circle and
the other selected for an impinging jet flow problem. MGMuses a nest of
grids from finest (uponwhich the solution is sought) to coarsest and is

based on the idea of using relaxation sweepsto smooth the error (equivalent
to eliminating high frequency Fourier componentsof the error). Thusmost
of the computational work is doneon coarser subgrids to eliminate longer
wave length componentsof the error. Twodifferent relaxation schemesare
tried: one is successive point overrelaxation and the other is a four-color

schemevectorizeable to tak_ advantage of a parallel processor computer for

greater computational speed. Results using MGM are compared with those

using SOR (doing successive overrelaxations with the corresponding relaxation

scheme on the fine grid only). It is found that MGM becomes significantly

more effective than SOR as more accuracy is demanded and as more corrective

grids, or more grid points, are used. For the accuracy required here, it is

found that MGM is two to three times faster than SOR in computing time. With

the four-color relaxation scheme as applied to the impinging jet problem the

advantage of MGM over SOR is not as great. Perhaps this is due to the effect

of a poor initial guess on MGM for this problem.
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Themultigrid method(MGM)[i] can numerically solve linear or non-

linear elliptic partial differential equations more rapidly than conven-
tional meansof solution such as successive overrelaxation (SOR). MGMcan

be applied to the numerical solution of partial differential equations not
amenableto numerical solution by fast direct matrix solvers such as

diagonal decomposition. Thus it was deemeddesirable to apply MGMto the
numerical solution of the system of nonlinear elliptic equations commonly

used to generate boundary-fitted coordinate systems, especially whenthe
numberof grid points is large. The standard elliptic equations for a typical
mapping, shownschematically in Figure i, are

Ll(X,y) = ex_$ - 2Bx_n+ yxnn + J2(px_ + Qxn) = 0 (i)

L2(x'Y_'"= aY$_- 2_v_n" + YYnn + ._2(p_,_,_j_ + Qyn) = 0
(2)

where

c_ = X2 + 2
n Yn

_{ = x2 + 2
Y_

(3)

and P and Q are functions of _ and q. Dirichlet conditions are specified on

all boundaries of the computational space including the interior slit (which

maps to the body in the physical space). Each side of the slit has a set of

Dirichlet data with a common value for each of the endpoints of the slit.

[I] A. Brandt, Math. of Comp., Vol. 31, No. 138, April 1977, pp. 333-390.
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Thebasic idea of MGMis to do most of the computational work on coarser

corrective grids containing far fewer points than the finest grid uponwhich
the solution is sought. The grids form a nest, each coarser grid having
twice the meshspacing in each coordinate direction of the previous finer
grid. In Figure 2 which represents the Full Approximation Storage schemeof

JlLl_l such that Eqs. (I)and (2)become Lu = F =""I01[1]: u= (x,y) L=

' L2 ,,0 '

i _ k =< M (k representing the k th grid with M the finest), _ = (x,y) on the

boundaries of the computational space (Dirichlet values so that A is an

identity operator) and superscripts refer to discretized quantities on the k th

grid. (All operations involving _ in the flow chart can be ignored, since the

Dirichlet conditions are constant on all the grids.) The main idea behind MGM

is that relaxation sweeps are a smoothing process which eliminate the highest

frequency Fourier components of the error on any grid. First, starting with

an initial guess for the solution, several sweeps are carried out on the

finest grid to eliminate high frequency components of the error. The smonthed

out error is represented by the residual fM = LMU M_ L Mu M and the correction

_- uM (where _ is the exact discrete solution on the finest M th grid). The

residual, consisting mainlyof longer wave-length Fourier components, is dealt

with by solving its coarser-grid approximation

LM-I _-i_ LM-I i_-i u M = _-i fM (4)

for b_4-1, which is represented by _k for k =M-I in the lower right box of

Figure 2. The symbol Ik-I
k means interpolation of a quantity from the k th

grid to the (k-l)st grid. Eq. (4) is solved in the same way as the original

equation on the finest grid. If solution of (4) is obtained after several

M
relaxation sweeps, the coarse grid approximation _-i __-i u to the smoothed

M M M _ (J-i M-I uM), whichout function _-J is added to u That is u ÷u + -i - IM

M
is the expression in the lower left box for k = M. The new u is a better

approximation to the solution _ and is the starting point for more relaxation

sweeps for the original set of Eqs. (i) and (2) on the finest grid. If conver-

gence is obtained, the process is complete; if not, the process returns to the

coarser grid to sweep the residual equation again. If it doesn't converge

after a few sweeps, then the next coarser grid is used to eliminate long wave

length errors for the residual equation, etc. Each residual equation has a

corresponding residual equation and correction on the next coarser grid. (The

residuals were weighted locally as in [i].)
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Figure 3 shows computer drawn body-fitted coordinate systems generated

to a specific accuracy using MGM and SOR (the two coordinate systems coincide).

The relaxation scheme used was successive point overrelaxation. According to

the notation used in Figure i, m and n are 81 and 21, respectively; the slit

end points are (_33,_13) and (_53,_13), respectively; (x_,Yb) = (-8.4, -8.0)

and (Xr,Y t) = (7.6, 0.0); Ax = .2 and Ay = .4; A_ = An = i; and the body is

a circle of radius one centered at (x,y) = (0, -3.2). P and Q were set to

zero in Eqs. (i) and (2). An experimentally determined, essentially optimum

overrelaxation factor of 1.7 was used in the successive point overrelaxation

sweeps in both MGM and the SOR method. All coarser corrective grids contain

grid points on the slit. The initial guess for x(_,n), y(_,n) in the computa-

tional space is obtained by extending the Dirichlet data at the outer boundaries

throughout the space except at the slit, where the body Dirichlet data are used.

The convergence criterion for the solution of Eqs. (i) and (2) was that both

L2-error norms (one for each equation) be less +_ - input value j' JjL 2_aLL an IEJ

(This will be called satisfaction of IIEIJL2. ) For Figure 3, iJEjje2 = .001.

To satisfy this criterion, MGM used 32.5 WU and 16.08 CP seconds compared to

66.0 WU and 22.17 CP seconds for SOR. (A work unit (WU) is the equivalent of

one SOR sweep on the finest grid, and CP seconds refer to central processor

seconds used on the Texas Instruments Advanced Scientific Computer (TI-ASC).)

SOR; wasFor JJEJJL2 .01, MGM used 20 WU compared to 29 WU for CP time the

same for both methods (due mainly to the additional computational work in

computing residuals in MGM). The results show that the effectiveness of MGM

increases (compared to SOR) as the error norm decreases. This is consistent

with the fact that the remaining longer wave length errors are eliminated more

slowly using SOR. The parameters 6 = .3, _ = .3 were used to control the flow

of MGM. The parameter 6 determines the convergence test on each grid and the

parameter _ determines how fast the convergence must be (how fast the high

frequency components are eliminated) on each grid. Whenever

< (jjEJJ_2)i+i/(jjEjjk)i kt hL2 on a grid, MGM will then process on the coarser

(k-l)st grid with an error norm to be satisfied equal to _(JJEJJ k )i+l (Super-
L2

scripts i,k refer to the ith relaxation sweep and the k th grid, respectively.)

These parameters are used as in [i], have a range (0 < _ <i; 0 < _ <i), and

greatly influence the performance of MGM. The present choice is not necessarily

optimum but was the best of a number of choices tried in the unit square.
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Figure 4 shows a computer drawn body-fitted coordinate system, similar

to Figure 3, generated with MGM and satisfying llEllL2 .001. The grid

parameters are (see Figure i): m and n equal to 129 and 81, respectively;

slit end points of ($49' _49 ) and (_81' q49 )' respectively; (x_,y b) =

(-7.68, -8.0) and (Xr,Y t) = (7.68, 0.0); Ax = .12 and Ay = .I; At = Aq = i;

and the circle of radius one was centered again at (0, -3.2). To satisfy

llEllL2 = .001 MGM used 21.863 WU and 70.67 CP seconds compared to 102.0 WU

and 217.83 CP seconds used by SOR. This represents a significant saving of

computer time by MGM. To satisfy IIEIIL2 .01 MGM used 10.863 WU compared

to 17.0 WU used by SOR with CP time essentially the same. These results,

along with those for Figure 3, show that MGM is more effective, compared to

SOR, when more corrective grids are used and more accuracy is required.

Figure 4 has five corrective grids and Figure 3 has three corrective grids

(_i,,_g_,,_,, t_,._ _,,=°_...._. _e parameters _ = .03 and _ = .2 controlled MGM

for Figure 4. Choosing smaller 6 and _ makes it more likely that all the

coarser corrective grids will be used, which is desirable.
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Figure 5 shows a computer drawn body-fitted coordinate system generated

using MGM and satisfying IIEIIL2 = .001. SON was also used to generate this

grid and is in excellent agreement with MGM. The geometry is motivated by

an impinging jet flow problem that is planned to be run on this grid. The

flow from the channel interacts with the solid body on the right. The

computational space has the same shape as the physical space except that

the body is replaced by a slit. Excluding the channel, the grid consists of

137 points in the horizontal direction by 97 points in the vertical direction.

The grid for the channel itself consists of 25 horizontal grid points by

33 vertical grid points. The slit (and body) are 49 grid points long.

Corner points on the body and channel have been excluded from the grid.

Exponential grid spacing was used along various parts of the horizontal and

vertical boundaries of the grid. In an attempt to preserve this boundary

spacing in the grid interior non-zero P and Q were used. Although grid lines

are still bent near the boundaries, they are not bent as much as when P = Q = 0

was tried. To compute this grid (which had 4 corrective grids, including the

finest) MGM was "vectorized" on the TI-ASC since it is a parallel processor

machine. To accomplish vectorization, which cut computing time by a factor of

six, a four-color relaxation scheme was used (i.e., even points of even rows

were relaxed simultaneously; odd points of even rows; etc.). With this scheme

MGM used 82.781 WU and 45.57 CP seconds to satisfy IIEIIL2 = .001 when using

an overrelaxation factor (RF) of 1.8 on the finest grid and relaxation factors

of 1.6, 1.4, and 1.2 for the progressively coarser grids. (Varying RF in this

way improved MGM's performance.) SOR (with the four-color scheme) used 170.0

WU and 76.68 CP seconds using a relaxation factor of 1.8, which is about

optimum for this SOR. MGM used 60.641 WU and 36.67 CP seconds to satisfy

IIEI IL 2 = .001 when RF's of 1.6, 1.4, 1.2, 1.0 were used on progressively

coarser grids (with 1.6 used for the finest grid). With these RF's MGM used

26.016 WU to satisfy IIEIIL2 = .01 compared to 82.0 WU used by SOR with

RF = 1.8. The parameters 6 = .05, _ = .95 were used for MGM which was

divergent for q < .9. MGM should perform better with a better initial guess

than used here. (The horizontal straight lines in the initial guess were

discontinuous at the right-most boundary.)
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Curved finite Element Mesh Verification

R. Wait and N.G. Brown

Department of Computational and Statistical Science,

University of Liverpool,

Liverpool L69 3BX,

England.

Abstract

In a computer program a finite element mesh in invariably represented as

a set of lists of numbers. It is the aim of this paper to provide techniques

whereby it is possible to verify that given sets of dat_ correctly define a

well posed finite elemen_ grid. Thus we wish to check that the data corresponding

to an individual element represents a single region with a simply connected interior.

In addition it is necessary to check that when the elements are pieced together

there are no overlaps and no gaps left in the representation of the domain of the

problem. In addition it is useful to check that nodes are only duplicated or

pathologically close together when this is necessary as for example when

discretizing one region with a crack.

We consider isoparametic and blended finite elements and provide simple

algebraic and/or geometric conditions that have to be satisfied if the trans-

formation on to a reference element is one-one. It can be shown that the well

kno_m '¼-point' condition is a special case of one of the necessary conditions but

is only sufficient in exceptional cases. Equivalent necessary conditions for three-

dimensional tetrahedron and brick elements are developed. Cubic and higher order

elements can be included in more general eond_tionsderived from blending function

approximations.

Sunrnary of a poster presentation at "Grid Generation Workshop", NASA-Langley

Research Centre, 6-7th October, 1980.



If N is the total numberof co-ordinates then any search through the co-ordinates

involves O(Nlog N) operations if; the search is arranged in terms of nestedbinary trees.

A straightforward search of a three dimensional co-ordinate list involves O(N3) operations

In terms of c.p.u, time, the dominantterm is the set up time for the tree rather than

the search time. The set up time is O(N) and even for moderateN (100-200), the binary

tree approachshowsdramatic gains. Onesearch through the nodeschecks for duplications.

A similar searchthrough the elements is used to check inter-element connectivities.



Whenconsidering curved grids various possible invalid elementshave to be checked.

Tests for (a) and (b) were developedby R.B. Simpson(see these proceedings). An element-

wise search is adopted for (c). A test on the local transformation is necessaryto avoid

(d) - nonconvexelementsand, (e) or (f) - overspill. In both these latter cases, the

interior of the reference elementE doesnot correspondto the region enclosedwithin the

boundaryDEof the physical elementE.



Thegeneral transformation T:_o+ E is linear (bilinear for quadrilaterals) and

forms the basis for the nonconvexity test. For isoparametric elementsthe Jacobianof

T1 is a polynomial in the perturbations a, b and e for the six-node triangle it is
N N

second degree in each of the perturbations.



Thevalidation of the local transformation requires the I-I correspondenceof the

simple closed curves 8Eand BE. Thenthe condition on the Jacoblanof the form J>>O

is sufficient to ensurea valid elementand an invertible transformation. Themethod

adopted is to view the condition J=Oas defining a curve with exterior J >0 that must

c_ntain _he reference element . Thus (a) leads to a valid element,(b) and (c) are

limiting casesand (d), (e), (f) and (g) are invalid.
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If two of the sides of a six-node triangle are fixed then the condition J > 0

can be viewed can be viewed as a restriction of the possible locations of the node on

the free side. The boundary of the feasible region can be split into arcs, each arc

arising from a limiting case of figure 5. If two sides are straight (a), the feasible

region is a wedge with straight sides. The limiting cases corresponding to J=O at a

vertex always reduces to a linear condition if the sides are curved (c)_ then there is

an additional non-linear arc corresponding to the tangential condition (d).
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Examples of the feasible region for a s_de nod e of a_element with two curved

sides.
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An an_logous approach can be adopted for other forms of elements such as

quadrilaterals. For the 8-node element the three conditions reduce to arcs;

two linear and one nonlinear. These bound the feasible region for the position

of one side node if all the others are assumed fixed. For elements with more

than one side (or edge) node it is not possible to provide a simple geometric

interpretation of the condition but it is still easy to represent it algebraically.



References

R.B. Simpson "A two-dimensionalmesh verification algorithm", these

proceedings.

N.G. Brown and R. Wait "Verification and Inversion of isoparametric

transformations" to appear.

A.R. Mitchell and R. Wait "The finite element method in partial differential

equations", Wiley, London, 1977.



Grid Generation for General Three-Dimensional Configurations

by

K. D. Lee, M. Huang, N. J. Yu and P. E. Rubbert
The Boeing Company

Seattle, Washington

Abstract

The objective of the present study is to construct a suitable grid system

for complex 3-D configurations such as a wing/body/nacelle shape for the
solution of nonlinear transonic flow problems. Two approaches have been

explored based on Thompson's body-fitted coordinate concept. The most general

approach is to divide the computational domain into multiple rectangular
blocks where the configuration itself is also represented by a set of blocks,

whose structure follows the natural lines of the configuration. The

block-structured grid system is adaptable to complex configurations and gives

good grid quality near physical corners. However, it introduces algorithm
issues for the flow solution concerning the treatment of nonanalytic grid

block boundaries and nonstandard grid cells. These issues have been explored

in relation to the grid generation. A more limited approach treats a

wing/body configuration with only a single rectangular block in computational

space. In this treatment the issues involving nonstandard cells are avoided,
but other limitations on grid resolution appear. Both a linear and a

nonlinear system of grid generation equations have been developed including

methods of grid control. The linear method can generate grids of comparable

quality with order-of-magnitude less cost. Its disadvantage is the greater

possibility of ill-conditioned grids which, however, can be easily controlled
in the block-structured grid system.

Grid Generation Equations

Linear System

: (x, y, z)

B to G: grid control
functions of I, _, and/or

Nonlinear System

A _+-'-_x +B _ +C _+-- +2 +
J-A / _ J2B j2C

A to F: coupling terms
functions of x, y, and z

P, Q, R: grid control

J = Jacobian of the transformation



Figure 1. Block structuring

This is a schematic illustration of a typical block structured grid about a
wing/body/nacelle configuration. The multi-block grid obviously provides more
desireable grid densities and eliminates the "lost corner." However, it
introduces special points termed a "fictitious corner," a "collapsed edge,"
and a nonanalytic block boundary.

Collapsed edge

Fictitious corner

Physical space

Computational space



Figure 2. Comparison of grid structure

Lost corner - a physical corner transformed into a smooth point in the
computational space

Fictitious corner - a smooth point transformed into a corner point in the
computational space

Nonanalytic block boundary - grid lines across the block boundary are
continuous but not smooth

Collapsed edge (3-D) - grid lines merge together in the physical space
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Figure 3. Block-structured grid generation process

After defining the overal block structure, a one-dimensional grid generation
along the block perimeter_ produces a perimeter discretization. This provides
boundary conditions for a subsequent two-dimensional grid generation producing
grids covering the block surfaces. These in turn serve as boundary conditions
to produce three-dimensional volume grids filling each block.
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Figure 4. Block-structure grid for an ellipsoid

This example shows the grid around an ellipsoid which has been transformed to
a cube in computational space. Fictitious corners can be seen.
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Figure 6. Comparison of grids near an airfoil

The use of multi-block grid is considered for an airfoil. Compared to the
ring-type grid, the multi-block grid seems to be overly complex. Its
advantage is in its adaptability to more complex geometry.

MULTIPLE-BLOCKGRID

SINGLE-BLOCKGRID



Figure 5. Algorithm compatability study

The effect of the grid structure and the special points on the flow solution
is explored by solving the potential flow over a cylinder. Cell-oriented flux
formulation is used to treat the algorithm issues. Surprisingly, all the grid
systems yield good resolution. Accuracy depends on the cell size rather than
the grid structure at the special points.
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Figure 7. Airfoil study

The ability to produce accurate solutions using the multi-block grid is
demonstrated in subsonic and transonic regions. Compared to the results from
the ring-type single-block grid, remarkable accuracy was obtained even when
the fictitious corner is located in supersonic regions. All the flow and
metric quantities are defined at the center of each cell and the artificial
density method is adopted for the density retardation in supersonic region.
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Figure 8. Surface grid for a wing/body
(single-block structure)

The use of the C-type grid provides smooth grid distribution near the wing
leading edge. The body surface line on the symmetry plane coincides with a
grid line which consists of lost corners. One concern is grid quality at the
wing tip.
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Figure 9. Surface grid for a wing/body
(multi-block structure)

The use of a multi-block grid eliminates the lost corners in the single-block
grid of figure 8 and improves the grid quality near the wing tip, while
producing the fictitious corners and nonanalytic block boundaries. Its
ability to extend to more complex configurations is obvious.



Figure 10. 3-D flow solution

A transonic solution for a wing/body combination is obtained using the
single-block grid and compared to the experimental results. The use of
body-fitted grid system improves the accuracy near the wing/body junction.
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Figure 11. 3-D flow solution

The body-fitted grid system can produce quite accurate pressure distribution
even on the body surface. Very coarse nose grid distribution prevents fine

pressure resolution in that region.
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BOUNDARY-FITTED COORDINATE SYSTEMS FOR ARBITRARY COMPUTATIONAL REGIONS

By Edward J. Kowalski

Boeing Military Airplane Company

Advanced Airplane Branch

Seattle, Washington 98124

A computational region of arbitrary cross section presents a significant

problem in the generation of a mesh. Simple orthogonal meshes are

difficult to use because the mesh points do not naturally fall on the

region's boundaries. Differencing and interpolation schemes become

complex and cumbersome, and it is difficult to extend these schemes to

higher order because of the complex logic required. Higher order schemes

are desirable as they allow calculation of a flow to a given level of

accuracy with a lower mesh density and hence less storage than a lower

order scheme. High accuracy solutions are possible for a region of

arbitrary cross-section when a boundary-fitted computational mesh is

employed. A boundary-fitted mesh is defined as a mesh in which the

boundary (i.e., a duct wall)- is coincident with the mesh points that are

used for finite difference expressions at, and adjacent to, the

boundary. Interpolation is not required, and extension to higher order

differencing is straightforward. This is a significant benefit when the

boundary conditions have a dominant influence on the solution.



This paper will discuss the application of Smith and Wiegel's method for

generating boundary fitted coordinate systems (discussed in their

AIAA-80-0192 paper entitled, "Analytic and Approximate Boundary Fitted

Coordinate Systems for Fluid Flow Simulation") for two practical flow

problems characterized by complex surface geometry:

o radial mixer lobe

o subsonic inlet designed for high angle-of-attack capability
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In the method of Smith and Wiegel, two disconnected boundaries are

defined and an explicit functional relation is used to establish the

transformation between the physical domain and the computationa! domain.

The physical domain is defined by a cartesian coordinate system; the

computational domain is defined with the variables _ , _ and _ with the

values:

OL_n _£

Two possible connecting functions are suggested: linear and a cubic

parametric polynomial. The following cubic polynomial equation was used

to generate meshes for both the lobe mixer and the subsonic inlet:

dX1
x " Xi(C,_)f1{n_ _ XZ(_,_)fz{n} 4 d-_ (_'t)f3 (n)

dX2

4 _ (_.{)f4(n),

dYI
._ = YlCE,{)f1(n ) * YZ{_,t)fz{_) • _ ({'c)f3(_)

dY2

dZ1

z - z_({._)fl(n)4 Zz(_,_)fzln) _ _ (_._)f3(n)



where:

X t(_, _ ),Y _ (%,_), Z_(_,_ ), _ : 1,2 are the

boundary points in the physical domain

dX_ (_,_), dY_ (_,i) dZ_ (_,_), _= 1,2 are the

derivatives of the boundary points in the physical domain

(1{n) . 2n3 - _-_ I,

(z(_)- _z.3 • 3._.

The cubic connecting function forces orthogonality at the boundaries of

the physical domain by calculating the derivatives dXj (_,_)
• _ _--_

dY,{
(_,_) and __ -._(_'_) from the cross product of the tangential

d--_

derivatives and then dividing by the magnitude of the normal vector.



Four extensions of the Smith and Wiegel method were necessary in order to

successfully apply their technique to the mixer lobe and subsonic inlet.

First, because of the nature of the mixer and inlet geometries, points

defining the boundaries had to be positioned using a geometric

progression.

where:

S = a + ar + ar 2 + ... + ar N'I

a(1-r N)
m

1-r

S = the total length of the boundary

a = first increment

r : scale factor

N = number of cells (one less the number of boundary points)

For the mixer, the scale factor r was varied linearly from r = I at the

mixer entrance plane (where the boundary is an arc) to r =r max at the

mixer exit plane (where the boundary is highly distorted). This makes it

possible to force the mesh to migrate to regions of interest without

causing significant distortions in the mesh from plane to plane. The

optimal distribution of mesh occurred when the upper and lower boundary

mesh points were stretched in opposite directions.



PRIMARY LOBE PLANE 94

GEOMETRIC PROGRE5SION LONER BOUNDARY 1.0000 UPPER BOUNDARY 1.0000

SLOPE SCALER LOWER BOUNDARY 1.0000 UPPER BOUNDARY 1.0000

PRIMARY LOBE PLANE 107

GEOMETRIC PROGRESSION LONER BOUNDARY 1.0500 UPPER BOUNDARY 1.0500

SLOPE SCALER LOWER BOUNDARY 1.0500 UPPER BOUNDARY 1.0500

PRIMARY LOBE - PLANE 1_0

GEOMETRIC PROGRESSION LOWER BOUNDARY 1.1000 UPPER BOUNDARY 1.1000

SLOPE SCALER LOWER BOUNDARY 1.1000 UPPER BOUNDARY 1.1000

Geometric Progression of Boundary Points for the Primary Stream.



,I,

,I,

if,

IW

,I,

,If

Jm

q,

iI,

11,

,If

SECONDARY LOBE - PLANE • 94

GEOMETRIC PROGRESSION LOWER BOUNDARY 1.0000 UPPER BOUNDARY 1.0000

SLOPE SCALER LOWER BOUNDARY 1.0000 UPPER BOUNDARY 1.0000

SECONDARY LOBE - PLANE J07

GEOMETRIC PROGRESSION LOWER BOUNDARY 0.9750 UPPER BOUNDARY 1.0500

SLOPE SCALER LOWER BOUNDARY 1.0250 UPPER BOUNDARY 1.0500

SECONDARY LOBE - PLANE i20

GEOMETRIC PROGRESSION LOWER BOUNDARY 0.9500 UPPER BOUNDARY 1.1000

SLOPE SCALER LOWER BOUNDARY 1.0500 UPPER BOUNDARY 1.1000

Geometric Progression for Boundary Points for the Secondary Stream.



The inlet has certain regions (hilite, throat, etc.) which require a fine

computational mesh to insure a detailed analysis. For this reason, four

regions along each inlet contour and five regions along the boundary of

the analysis domain required individual geometric progressions. The

scale factor, r and the number of cells, N, of each regions must be

chosen to insure a smooth progression in cell length along each of the

boundaries.
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The second extension uses a ramping function to regulate the dependence

of the connecting function on the boundary slope. This connecting

function is an explicit functional relation used to establish the

transformation between the physical domain and the computational domain.

For the mixer lobe, this dependence was regulated to redistribute the

internal mesh points and reduce mesh skewness.

In the case of the subsonic inlet, it was found that a constant value for

each plane was sufficient to insure against mesh line cross-over.



WITHOUT RAMPING FUNCTION

WITH RAMPING FUNCTION

Figure 4. Connecting Function Dependency on Boundary Slope.



WITHOUT RAMPING FUNCTION

WITH RAMPING FUNCTION

CONNECTING FUNCTION DEPENDENCY ON BOUNDARY SLOPE



The third extension utilizes the concentration function suggested by

Smith and Wiegel, but uses it to force the mesh in the direction of both

boundaries of the mixer lobe. More mesh was then needed to be linearly

added to fill the void created by this mesh concentration.

The inlet only required the mesh to be forced towards the inlet contour.

A concentrated mesh was assumed unnecessary along the spinner boundary;

it was felt that for a potential flow analysis the flow about the spinner

would not propagate upstream and affect the solution at the regions of

interest (hilite, throat, etc.). The mesh concentration for both the

mixer and the inlet permits flow analysis within the boundary layers.



MESH CONCENTRATED TOWARDS

INNER BOUNDARY

MESH CONCENTRATED TOWARDS

OUTER BOUNDARY

MESH CONCENTRATED TOWARDS

BOTH BOUNDARIES

Figure 5. Mesh Concentration.
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The fourth extension applies to the subsonic inlet only. It was

necessary to produce a computational mesh which possessed a smooth

progression of cell metrics and cell volumes in all directions to allow a

solution process of a flow analyser to use the grid efficiently. The

interior points of the computational mesh were "smoothed" by a multiple

application of a five point diffusion operator:

X(L,!)n_w = _ {X(L- 1,!)+ X(L+ !,!)+X(L,!- 1)+X(L, !+!)-4 R X(L, I)old}

YlL, Ilne w= OL{YIL-I, II+Y(L+I, II+Y(L,I+ll +Y(L,I+11-n°YlL, Iloldl

The value of 01 and the number of times of application were determined by

trial and error. "

The "smoothed" boundary points could not be determined from the five

point diffusion operator since one of the required smoothing points would

be outside the mesh region. Their values were determined from t_e

intersection oR the lines defined by the "smoothed" interior mesh points

and the boundaries.



L+I

L

L-1

I+1

I

I-1

X(L,l)new

Y(L, I)ne w

= OL{X(L- 1,1)+ X(L + 1,1)+X(L, I- 1)+X(L, I+ 1)-4 • X(L, I)old}

= 01,{Y(L-I,I)+Y(L+I,I)+Y(L,I+I) +Y(L,I+I)-4*Y(L'I)old 1

FIVE POINT DIFFUSION OPERATOR
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"SMOOTHED" COMPUTATIONAL MESH
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"SMOOTHED" COMPUTATIONAL MESH



L

L+I

L+2

I+1

=_°....._..of segment '0

YIL, I)- Y(L, I +1)

M1 = X(L, I)- X(L, I + 1}

equation of segment (D

Y-Y(L,I) = MI[X- X(L,I) 1

slope segment (_)

®

Y(L+ 1, I + 1) - Y(L + 2, I +1}

M2= X(L+ 1, I + 1)- X(L+ 2, I + 1)

equation of segment (_)

Y-Y (L+ 1, I +1) = M2[X-X(L+I, I + 1) 1

since a line thru segment @ intersects segment 0 •

the X's and Y's of equations (_) & (_ equal each other.
Solving for X:

X(L, I + 1)new =

Solving for Y:

Y(L, I + 1)ne w

®

M,[X,L.,,}-M2IX,L"1.'+1)}+Y'L+1.,+,)-Y,L.,,

= M 1 I X(L,

M 1 - M2

I + 1)ne w - X(L, I)l+ Y(L, I)
J



Example meshes for the last radial mixer lobe cross section and one

subsonic inlet cross section.



OL_UI_U.K_ LOBE - PLANE J20

GEOMETRIC PROGRESSION LONER BOUNDARY 0.9500 UPPER BOUNDARY 1.1000

SLOPE SCALER LOWER BOUNDARY 1.0500 UPPER BOUNDARY 1.1000

PRIHRRY LOBE - PLANE l_0

GEOMETRIC PROGRESSION LOWER BOUNDARY 1.1000 UPPER BOUNDARY 1.10@0

SLOPE SCALER LOWER BOUNDARY I.]000 UPPER BOUNDARY 1.1088

Example Mesh for Last Mixer Plane.
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EXAMPLE MESH FOR THE SUBSONIC INLET



Conclusions

The method of Smith and Wiegel can be used to generate meshes for mixer

lobes and subsonic inlets that are compatible with flow analysis codes

requiring a boundary fitted coordinate system. Successful application of

this mesh generator required development of procedures to distribute the

mesh points along the boundaries, to regulate the dependence of the

connecting function to the local boundary slope, to concentrate the mesh

into regions of special interest, and to modify the mesh grid so that it

possessed,a smooth progression of cell metrics and cell volumes in all

directions. The method of Smith and Wiege! when coupled with the

extensions mentioned above has proven to be easy to use and control for

the inlet and mixer lobe geometries investigated.

The next step is the formulation of a truncation error monitor for

arbitrary meshes. This monitor will define where in an analysis domain

the grid length scales must be changed and by what amount in order to

equalize truncation errors over the entire analysis domain. Once these

errors have been equalized, this same monitor will use several levels of

grid distribution (of the above analysis grid) to then make estimates of

the absolute truncation error spectrum. This work is currently under

contract with the NASA Langley Research Center.



A VARIABLE COEFFICIENT APPROACH

TO BOUNDARY-FITTED COORDINATES

by

Thomas T. Bowman

University of Florida

Prepared under U.S. Navy Contract 1800-0832-79 issued by

David W. Taylor Naval Ship Research and Development Center



The author has investigated the use of the generating

equations

(O_x) x+(O_y)y =0

(_nx)x+(_ny)y=0

where o and T are strictly positive functions. Much of the

work in boundary-fitted coordinates can be presented

naturally in a unified approach using variable coefficients.

The advantages of this approach are:

(i) The generating equations have both a maximum and

minimum property.

(2) The equations have the physical interpretation

as the heat equation with variable thermal con-

ductivity constants which leads to an intuitive

concept of controlling the _ and n lines.

The method has been implemented on a CDC 6700 computer

at DTNSRDC. The adoption of the variable coefficient

approach can be accomplished by limited changes in most

programs which generate boundary-fitted coordinates.

The author also has some new results on generating

orthogonal meshes with prescribed boundary values.



GRID AND METRIC GENERATION ON THE

ASSEMBLY OF LOCALLY BI-QUADRATIC COORDINATE TRANSFORMATIONS t

A. J, BAKER & P, D, MANHARDT

UNIVERSITY OF TENNESSEE/KNOXVILLE,

AND CoMCo, INC, KNOXVILLE, TN

ABSTRACT

The generation of metric coefficients of the coordinate

transformation from a generally curved-sided domain boundary

to the unit square (cube) is required for efficient solution

algorithms in computational fluid mechanics. An algebraic

procedure is presented for establishment of these data on the

union of arbitrarily selected sub-domains of the global solution

domain. A uniformly smooth progression of grid refinement is

readily generated, including multiple specification of refined

grids for a given macro-element domain discretization. The

procedure is illustrated as generally applicable to non-simply

connected domains in two- and three-dimensions.

tResearch principally supported by USAF Grant No. AFOSR-79-O005.



COMPUTATIONAL REQUI REMENT

NAVIER-STOKES EQUATIONS

@qi
L(qi) - _t ]0jqi ij

_qi ^

L(qi) = azq i + a2 -_j nj + a3 = 0

COORDINATE TRANSFORMATION

x i = x i(nj) _xj _nk _xj

- = [_qkl - 3n k

j z L_-j] Uk - _xj uj

NUMERICAL SOLUTION ALGORITHM

Se[{DETj}T[M3OOO]{QI}'-- e e {UBAR-K}Te [M3OKO]{QI}-

T[M3OKO] { FLI }el-{ETAKL} e _ _ - {0}

DISCUSSION

The Navier-Stokes equations contain the vector divergence

operator. The required transformation projects x i onto nj with

coordinate surfaces defined coincident with solution domain

boundaries. The Cartesian description of dependent variables is

retained, while the convection velocity is expressed in contra-

variant scalar components. The numerical solution implementation

requires nodal distributions of components of the forward and

inverse Jacobins, and J, K, and L are tensor summation indices.



LOCALLY BI-QUADRATI C COORDINATE TRANSFORMATION

PHYSICAL DOMAIN TRANSFORMED DOMAIN

x] - {N2(_)}T{XI}e

Two-Dimensional

×2

 7/2

Three-Dimensional

DISCUSSION

The bi-quadratic cardinal basis {N2(_)} transforms the vertex

and non-vertex node coordinate description of a smooth region of

Rn onto the unit square or cube spanned by the locally rectangular

Cartesian coordinate system n. The inverse transformation J i is

non-singular for a range of non-midpoint definitions of the non-

vertex node coordinates (x), yielding a non-uniform discretization

on Rn



EX_PLE: COMPRESSOR BLADE ROW

Macro-Domain
Discretization
Segment

DISCUSSION

\

Resultant Solution
Domain Coarse
Discretization

Ill

iii
lllll

Resultant Macro-
Domain Fine
Discretization

Three of the ten macro-domains, used to form the blade row

discretization, are shown. The non-midside location of non-vertex

nodes produces the non-uniform grid, only a few gridlines of which

are shown. The inset illustrates a fine fiscretization of one

macro-domain. The coordinates of all nodes on boundaries of macro-

domains are unique.



DETAILS OF THE COORDINATE TRANSFORMATION

NODAL COORDINATES {XI}:

• - {N2(nj)}T{XI}ex 1

WHERE:

l
{N2(ni)} z

(I - nl)(l - n2)(-nl - n2 - I)

(I + nl)(l - he)( nl - n2 - I)
(I + nl)(l + n2)( nz + n2 - I)
(I - nl)(l + n2)(-nz + n2 - I)

2(I - nz2)(l - n2)
2(I + nl)(l - n_)

2(I - nz2)(l + n2)
2(I - nl)(l + n_)

JACOBIANS

[_x i]

J ---L-_nj] : J(nj, Xl)

1_nj]
J-1=L_-_i]=- detJ [cofactors of J]

= J-1(nj, Xl)

DISCUSSION

Within a macro-domain, the components of both J and j-z are

continuous functions of nj and the global macro-node coordinate

pairs (triples) {XI}, l _ I ± n. Each global coordinate x i pos-

sesses an independent transformation; the corresponding Jacobian

must be of rank n to assure existence of J-Z. Once the matrix

elements of {XI} are defined, selection of any coordinate (nl, n2)

defines a unique coordinate pair (xl, x2), i.e., a mesh point on

the refined grid in physical space.



GENERATIONS OF ORTHOGONAL SURFACE COORDINATES*

F. G. Blottner and J. B. Moreno

Sandia National Laboratories%

Albuquerque, NM 87185

An orthogonal surface-oriented

coordinate system has been developed

for three-dimensional flows where the

computational domain normal to the

surface is small. With this restric-

tion the coordinate system requires

orthogonality only at the body surface.

The coordinate system is as follows:

one coordinate measures distance

normal to the surface while the other

two coordinates are defined by an

orthogonal mesh on the surface. One

coordinate is formed by the inter-

section of the body surface and the

meridional planes as illustrated in

Figure 1 and gives the 0 = constant

lines. The other coordinate _, which

is nondimensionalized with a character-

istic length of the body geometry,

measures the distance along the body

surface when 0 = 0. This coordinate

system has been utilized in boundary

layer flows i'_ and for the hypersonic

viscous shock-layer problem. =

Two methods have been developed

for generating the surface coordinates.

The first method uses the orthogonal

condition in finite-difference form to

determine the surface coordinates with

the metric coefficients and curvature

of the coordinate lines calculated

numerically. The second method obtains

analytical expressions for the metric

coefficients and for the curvature of

the coordinate lines. Both methods

assume the body surface is defined in

terms of a cylindrical coordinate

system where r = r(x,0). The surface

inclinations _] and _2 as illustrated
in Figure 2 ar_ determined from

()Dr and r tan _2 -
tan _ 1 = _-x 8 x

and are known quantities.

PLANE OF

SYMMETRY _'_ ,a' _O- • r X

.l _llflllllllllY _' "/¢' /'_ _BODY

/ MIlIIV, ; :+,- \ / iSURFAcE

IAIIIIIIIIIIllr_ J,,_' ;" _"
I1111111111111 ..
IIIIIIIII1#' I

/ _----"__ _I PIANEMERIDIONAL

_pS_ANGTNATION_'_,, _

Z

Figure i. Surface Coordinate System.

Figure 2. Angles _i and ¢2 Defined in
the Cyliddrical Coordinate

System.

* This work was supported by the U. S. Department of Energy under contract

DE-AC04-76-DP00789.

% A U. S. Department of Energy Facility.



In the numerical method,* ' 2 the
orthogonal condition for the surface
coordinates results in the relation

dx = I d8 (along _ = constant)

where

I = r tan _i tan _2/(i + tan2 _i )

Theequation of the surface provides
the relation

dr = tan _i dx - r tan _2 d8

The surface coordinate _ is determined
numerically from the foregoing
equations by assuminga value of de
and marching awayfrom 8 = 0 to deter-
mine the values of x and r. In
addition the metric coefficients are
determined numerically from

h_ = ds/d_

h = dt/d_
0J

whe re

= 8/2z

ds 2 = dx 2 + dr 2

dt 2 = ds 2 + r2d8 2

The curvature of the coordinate lines

are determined from

1 _h_ for e = constant

K_ = h_h _

1 _h for _ = constant
K =

h_h _

with the derivatives replaced with mid-

point difference relations.

°In the second method 3, an analyt-

ical expression is developed for h
as follows :

h = 2_r (i + cos2_l tan2_2 )1/2

A differential equation results for

the other metric coefficient as follows:

h_ d,_ - 2_r cos2_l tan _2 _x 18

This equation is integrated along

= constant lines on the surface

from the initial condition h_ =
1 at 8 = 0. The substitution of

foregoing equations into the

equations for K_ and K give
• . 60

analytlcal expr_sslons for the

curvature of the coordinate lines.

In evaluating these relations,

the variations of x and 8 along

the _ = constant coordinate must

be known.

A sphere at angle of attack

as shown in Figure 3 is used

to illustrate the computation of

the surface coordinates with both

methods. The surface coordinates

on the sphere as viewed from the

side are illustrated in Figure 4.

The _ = constant lines result from

planes intersecting the sphere

with these planes passing through

the line which is normal to the

plane of symmetry and is located

at

x/a = 4 1 - (b/a) 2

y/a = (x/a)2/(b/a)

The metric coefficients for this

coordinate system are given in

Figures 5 and 6 with good agree-

ment between the two methods. The

curvature of the coordinate lines

are given in Figures 7 and 8. It

is noteworthy that K r is independent

of _. The differences evidenced

in Figure 8 can be partially

attributed to the numerical evalua-

tion of K being at one-half mesh

space locations away from the

indicated.

The numerical method of gene-

rating the orthogonal surface

coordinates has been applied to

ellipsoids, paraboloids and elliptic-

paraboloids. The coordinates on an

ellipsoid are illustrated in Figure 9.

The second method or analytical

approach has only been developed for

the sphere.
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Figure 3. Cylindrical Coordinate

System for "Sphere at

_mg!e of _tack".
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Lines of Constant 8.
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Figure 9. Surface Coordinates on
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CONSTRUCTION OF COMPOSITE THREE-DIMENSIONAL GRIDS

FROM SUBREGION GRIDS GENERATED BY ELLIPTIC SYSTEM

by

P. D. Thomas

Paper not available for printing.



SOME ASPECTS OF ADAPTING COMPUTATIONAL MESH

TO COMPLEX FLOW DOMAINS AND STRUCTURES

WITH APPLICATION TO BLOWN SHOCK LAYER

AND BASE FLOW

by

C.K. Lombard, M.P. Lombard, G.P. Menees, and J.Y. Yang

The proposed paper treats several practical aspects connected with

the notion of computation with flow oriented mesh systems. Simple,

effective approaches to the ideas discussed are demonstrated in current

applications to blown forebody shock layer flow and full bluff body

shock layer flow including the massively separated wake region.

The first task in constructing an adaptive mesh is to identify the

gross flow structures that are to be captured on the mesh and to work

out a grid topology that conforms to them. Among the properties the mesh

topology ought to admit are both computational accuracy and algorithmic

compatibility. Both these properties are served by grids that feature

large connected segments of natural or computational boundaries fitted

by mesh surfaces or curves of constant coordinate. But it is neither

necessary or always desireable that the entire surface of a particular

boundary feature be fitted by a single surface segment of one family

of coordinates. For accuracy, convenience, and particularly from the

point of view of modern algorithms that embody such features as vector

organization, spatial splitting, and implicit solution, it is very

desireable that the mesh be composed of identifiable continuous grid



lines, not necessarily of homogeneous coordinate type, that run from

boundary to boundary.

These notions are illustrated in the application to high Reynolds

number full bluff body flow in axisymmetry. Here the basic structure

of the turbulent flow is well known, Figure I. The computational mesh

that we have adapted to the flow is shown in Figure 2.

We note that in the mesh shown the computational boundaries -

axis of symmetry, bowshock, body, and outflow plane are all fitted by

continuous grid lines. The mesh is so constructed as to be flow aligned

over the four principal regions - forebody shocklayer, base recircula-

tion, outer inviscid wake, and inner turbulent viscous wake. We note

the wrap around mesh provides continuity of the boundary layer and

shear layer in the aft expansion zone. The continuity of the mesh

coordinate topology is broken in the recompression zone which embeds

a saddle surface of the turbulent flow solution at the interface of

the recirculant base flow and downstream viscous wake. The singular

topology of the mesh in the base recompression zone is illustrated in

Figure 3. The viscous wake core box of the mesh, which provides con-

tinuity across the viscous-inviscid wake shear layer, can be regarded

as a separate sheet of the topology with a cut taken along a line from

the singular point down through the recompression zone to the wake axis.

The cut forms part of a set of construction lines embedded in the

mesh, Figure 4. It is central to the method described that these lines

which largely define the base mesh structure are also representative

of the flow structures which the mesh is to fit. Thus in the approach

presented here the construction lines serve the role of supplemental



imaginary boundaries along which meshnodes are distributed according

to the usual criteria on ordinary boundaries. The resulting bounded

domains can then be filled in with computational grid by any of a large

variety of means, for example1'2'3'4

The particular grid shownin Figure 2 is quite adequate in concept,

though not optimized in detail, and was simple constructed in a single

pass using one dimensional distributions along straight coordinate lines

between boundary points. Wherenon-uniform distributions have been

required they have been conveniently accomplished using a universal

stretching function due to Vinokur 5. In the program, for the stretching

function as we have adapted and use it, the total interval along the

coordinate line and the (approximate) first meshspacings from either

end of the interval are specified. The function then returns the dis-

tribution between boundary points. As convenient, the stretchings are

done variously in X, Y, or S (arc length). The actual X and Y coordinates

of meshpoints are then found by the functional relationships of points

on the given coordinate curve, which of course can be piecewise defined.

Where fictitious boundary lines are to be embeddedin the meshactual

boundary points are defined on the connecting coordinate lines at half

first-mesh-cell intervals away from the fictious lines.

A virtue of meshes constructed of distributions along analytically

defined coordinate curves, and particularly straight lines, is that

differential displacements of boundary points are readily functionally

transformed through kinematic relations into corresponding displacements

of the intervening grid points so as to leave invariant the relative

distributions of mesh points along the given coordinate curves. For



the meshshown in Figure 2, we presently use this property to analyt-

ically deform the outer flow portion of the mesh in relative conformity

with the moving, fitted bowshock.

In a similar manner it is intended in future work to differentially

adapt the interior base meshto the changing flow solution by moving

the underlying construction lines. A central requirement to do this is

to define relationships tying the construction lines to the base flow

solution. In this regard it is intended that the X coordinate of the

meshsingularity coorespond to the axial location of maximumwake pres-

sure. Presumably, the Y coordinate of the singularity which lies on

the construction line through the viscous-inviscid wake shear layer ought

to be determined from a fit to the axial velocity gradient.

Along the samelines, however, we have developed an adaptive mesh

for the blown forebody shock layer which is intended to represent flow

over an ablating body. Here we wish to distribute points in predetermined

ways in the blown layer, the shear layer interface, and in the outer

flow region. In this case a construction line demarking the interface

between the blown and outer flow regions can readily and unambiguously

be fitted to the zero of the stream function based on mass flux and this

is what we have done.

Wenote in connection with the blown shock layer that the associated

flow has regions of steep gradient in density, velocity, mass flux, and

temperature and that these properties by no meansvary together. We

take it that an accurate calculation ought to resolve all these features.

Thus we think for this application a mesh distribution approach based

on the integral of gradient of a single flow property such as Dwyer 6



has demonstrated is not evidently optimum. A similar distribution

based on weighted gradients is certainly feasible but this would appear

to be more tedious to implement than a compromise ad hoc distribution

tied to key features of the flow structure as we have done. In the

paper we shall present curves showing the variation of relevant flow

properties across a blown shock layer and show how the simple ad hoc

distribution approach we use results in satisfactory resolution of all

properties.

l .

o

.

.

o

.

References

Smith, RoEo and Weig!e, B.L., "Analytic and Approximate Boundary

Fitted Coordinate Systems for Fluid Flow Simulation," AIAA-80-oIg2,

AIAA 18th Aerospace Sciences Meeting, Pasadena, CA, Jan. 14-16, 1980.

Eiseman, Peter R., "Coordinate Generation with Precise Controls,"

Seventh International Conference on Numerical Methods in Fluid

Dynamics, Stanford University and NASA-Ames Research Center,

June 23-27, 1980.

Thompson, J.F., Thames, F.C., and Mastin, C.W., "Automatic Numerical

Generation of Body-Fitted Curvilinear Coordinate Systems for Fields

Containing Any Number of Arbitrary Two-Dimensional Bodies," Journal

of Computational Physics, 15, 299, 1974.

Middlecoff, J.F. and Thomas, P.D., "Direct Control of the Grid

Point Distribution in Meshes Generated by Elliptic Equations," AIAA-

7g-1462, AIAA Computational Fluid Dynamics Conference, Williamsburg,
VA, July 23-25, 1979.

Vinokur, Marcel, "On One-Dimensional Stretching Functions for Finite-

Difference Calculations," Final Technical Report for Period July l,

Ig78.to June 30, 1979, Grant No. NSG 2086, The University of Santa

Clara, CA.

Dwyer, H.A., Kee, R.J., and Sanders, B.R., "An Adaptive Grid Method

for Problems in Fluid Mechanics and Heat Transfer," AIAA-79-1464,

AIAA Computational Fluid Dynamics Conference, Williamsburg, VA,

July 23-25, 1979.



0"01 0"6 O'g O'Z 0"9 0"5

J_
0°_ 0"£ O'Z O'I 0°0



=,,-_
._ °_ •

L O_

_o_o

\

\

\

\

\
\
\

\ \
\\ \
\

\
\

%



GRID GENERATION USING COARSE, S_IOOTH FINITE ELEMENTS

by Lawrence J. Dickson*

Mail Stop FS-IO
Dept. of Aeronautics & Astronautics

University of Washington
Seattle, WA 98195

SUMMARY

I. Approach

The grid generation problem lends itself to the use of finite elements

and variation equations.

(1) Grids are usually generated as smooth solutions to "nice," elliptic

differential equations--just the equations well suited to variational methods.

(2) The use of smooth finite elements gives the grid a functional

expression, which can be examined, evaluated, manipulated, and modified

naturally and cheaply.

(3) The "grid equations" are chosen for their qualitative character.

Exactitude of solutions does not matter as long as this is preserved. As a

result, extremely coarse (cheap) finite elements may generate a grid of high

quality, if the boundary conditions are well parameterized.

II. Results

I succeeded in demonstrating the following.

(1) Grid-quality solutions of a wide variety of equations--(direct)

Laplace's, biharmonic, Helmholtz, even nonlinear--can be generated to fit

reasonable functional boundary conditions in 2D using very coarse rectangular

finite elements, often 6x3 C2 bicubic. I even tried some "wavy" operators

(with no natural variational expression) to demonstrate the method's versa-

tility. I did not try the inverse Laplace equation, but I expect no problem

*This work was supported by the Boeing Commercial Airplane Co.



but cost.

(2) The finite element grids can be refined, locally modified and

"fine-tuned" using a simple, cheapcomposition-of-functions approach,

without having to solve the differential equation repeatedly.



Generation of Boundary and Boundary-Layer Fitting Grids

by

C. M. Ablow and S. Schechter

SRI International

ABSTRACT

A grid that improves the accuracy and speed of computation with a

given finite difference approximation to a boundary value problem for

a differential equation is more satisfactory than other grids. A

best method of grid generation will therefore depend on the problem

domain, the solution, and the difference scheme.

_L autommtmc generator for LLL_ gE±Q enac minimizes the truncation

error of a given difference scheme for two-point boundary value problems
,

over a finite one-dimensional interval has been previously presented.

This truncation error minimizing (TEM) generator changes the independent

variable to one in which uniformly spaced nodes fit the boundaries and

cluster in any boundary layers where the solution has a sharp variation.

The number of nodes and the complexity of the calculation are known

in advance so that the time and cost of the calculation can be estimated.

Other generators producing grids that equally distribute measures of the

solution curve arc length or length and curvature were found to be about

as accurate as the TEM generator but more easily implemented. The arc

length coordinate can also be defined as the transformation that minimizes

the sum of the squares of the derivatives of the dependent and independent

variables, a definition that readily generalizes to higher dimensions.

Experience with two-dimensional grid generation, as applied to a

Dirichlet problem for the Poisson equation on the unit disc, is presented.

The example has an analytic solution with sharp variation across a

C. M. Ablow, S. Schechter, and W. H. Zwisler, "Node Selection for Two-

Boundary Value Problems," sumbitted to Computational Physics.



diameter of the disc. The grid is uniformly rectangular on the unit square

in the transformed coordinates. Transformations were chosen to minimize

the sumof the squares of the derivatives of the dependent variable and

of the dependent and originally independent variables. The TEMtransfor-

mation was judged too complex to be practical. The results show that

the grid fits the boundaries, clusters about the boundary layer, and

rotates into alignment with it as desired.



x i \

SA-6469-9

UXX + Uyy = 2p 2 sech2 pz tanh pz
FIGURE 2 SOLUTION GRID (SKETCH)

u = tanh pz

z = x cose + y sino,

p = 20

o. = _/6
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FIGURE 1 PROBLEM DOMAIN



CURVlLINEAR GRIDS FOR SINUOUS RIVER CHANNELS

by

Frank B. Tatom, Engineering Analysis, Inc,

Wi|liam R. Waldrop, Tennessee Valley Authority

S. Ray Smith, Engineering Analysis, Inc.



CENTERLINE INTRODUCTION

In order to effectively analyze the flow in sinuous river channels
a curvilinear grid system must be developed for use in the appropriate hydro-
dynamic code. The CENTERLINE program has been designed to generate a two-
dimensional grid for this purpose.

The Cartesian coordinates of a series of points along the boundaries
of the sinuous channel represent the primary input to CENTERLINE. The program
calculates the location of the river centerline, the distance downstream along
the centerline, and both radius of curvature and channel width, as a function of
such distance downstream. These parameters form the basis for the generation
of the curvilinear grid.

Based on input values for longitudinal and lateral grid spacing,
the corresponding grid system is generated and a file is created containing
the appropriate parameters for use in the associated explicit finite difference
hydrodynamic programs. Because of the option for a nonuniform grid, grid spac-
ing can be concentrated in areas containing the largest flow gradients.

For the case of sinuous channels of constant or nearly constant
width the resulting curvilinear grid is orthogonal. The grid generation
procedure also provides for dividing the overall flow area under consideration
into a series of regions connected along common boundaries. This concept of
multiple regions tends to improve computational efficiency.

For many sinuous channels the assumption of constant width is not
appropriate. In such situations CENTERLINE generates a nonorthogonal grid
which takes into account the nonuniform channel width.

The CENTERLINE program is currently operational and has been used
successfully in conjunction with both two- and three-dimensional incompressible
hydrodynamic programs. To the authors' knowledge, it is the only ourpilinear
grid program currently coupled with operational incompressible hydrodynamic
programs for computing two- and three-dimensional river flows.
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GOVERNING EQUATIONS FOR INCOMPRESSIBLE CURVILINEAR FLOW

CONTINUITY :

1 [_x (hyhzU) + _y (hzhxV)+ _z (hxhyW)] = 0hxhyh z

X-MOMENTUM"

[3u u 3u + v _u + w _uP -_ + h 3x h 3y h 8z
x y z

_h _h _h _h

v y u x) +w( u x w z ](v )"h h _x h h _y -h h _z h h 3x
y x x y x z z x

h h h
x y z

[_x (hyhz°xx) + _y (hzhx°yx) + _z (hxhy°zx)]

o 3h o _h o _h o _h
xy x + zx x yy y zz z + F

+ h h _y h h Sz h h 3x h h 8x x
x y x z x y x z

Y-MOMENTUM"

[3v u 3v v. 3v w _vP _ + h 3x + h _y + h 3z
x y z

3h 3h 3h _h 1
w z v Y) +u ( v y u x

- w (hzhy 3y hyh z 3z hyh x 3x hxhy _y

1 [Tx (hyhz°xy) + 3-_ (hzh o
hxhyh z x yy ) + _z (hxhyCrzy)]

o _h o 3h o _h z o 3h+ yz ____y__+ xy _y_ _ zz xx x
hyh z 3z hyh x 3x hyh z 3y hyh x 3y + Fy



Z-MOMENTUM:

u 3w v 8w w _w

h x _x + h"-y _--y + h z _z

Bh Bh 3h

- u (h u x w z) w z
h B--z- h h Bx + v ( h h By

xz zx z y

Bh

v y_)]h h 3z
y z

1

hxhyh z
[-_x (hyhzOxz) + _y (hzhx°y z) +

o Bh o
+ zx z + yz

h h Bx
xZ

Bh o Bh
Z XX X

h h By
z y hzh x Bz

o Bh
.---Z+ FBz z

z y

ENERGY :

BT + u BT + v BT + w BT

Bt hx Bx hy By h z Bz

1 [ 3 a h h _y a h hhxhy hz -_ ( x y z BT y z x BTh x _-x) + ( hy By

azhxhy



COMPUTATION OF METRIC COEFFICIENTS

FUNDAMENTALCONSIDERATIONS:

• APPEAR IN GOVERNING EQUATIONS

• ONLY h REQUIRES COMPUTATION
x

• EVALUATED FOR EACH GRID POINT

• DERIVATIVES ALSO REQUIRED

BASIC RELATIONS:

R +y
hx _ c

Rc

h = 1
Y

hz : 1

DERIVATIVES:

_h x

_x

_h
X

_Y

dR
__,Z c

Rc2 dx

1

Rc



GENERATIONOFCURVILINEARGRIDS

NON-UNIFORM
GRIDTRANSFORMATION

CONSTANTWIDTH
CURVILINEARGRID

I DIGITIZATION OF CHANNEL IBANK COORDINATES

CURVATURE OF CENTERLINE

ORTHOGONAL ICURVILINEAR COORDINATES

I VARIABLEWIDTH TRANSFORMATION

I NON-ORTHOGONALCURVILINEAR COORDINATES

NON-UNIFORMGRID TRANSFORMATION

VARIABLE WIDTHCURVILINEAR GRID
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COMPUTATION OF RADIUS OF CURVATUREAND CHANNEL WIDTH

• DIGITIZE CARTESIAN COORDINATES OF CHANNEL BANKS

• LOCATE GEOMETRIC CENTERLINE

• COMPUTEDISTANCE ALONG CENTERLINE, x

COMPUTERADIUS OF CURVATURE, Rc(X )

• COMPUTECHANNEL WIDTH, b(x)



VARIABLEWIDTHTRANSFORMATION

BASICTRANSFORMATION:

b = Y2(X) - Yl(X)

X = x

Y : y/b

TR.ANSFORMATION DERIVATIVES:

@f _ Bf + Bf y,
Bx Bx

Bf _ Bf 1

By @Y b

B2f B2f
Bx2 BXz

B2f B2f 2
+ 2 _--_v-Y' + _-y_-(Y')

B2f B2f I

By2 BYz b2

where

y, Y db
: -6B-/

y,, 2Y db Y d2b
= _TBR-- b dx2



Y X

X-Y PLANE

Z

X

PRIMARY REGION OF INTEREST

X-Z PLANE

Non-Uniform Grid System
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Relationship Between Non-Uniform and Uniform Grids



TRANSFORMATION FROM NON-UNIFORM TO UNIFORM GRID

PROCEDURE:

• IDENTIFY "REGIONS OF INTEREST"

• INPUT DESIRED GRID SPACING

• GENERATE TRANSFORMATION DERIVATIVES

BASIC TRANSFORMATION:

\

x = x(x) J

y : y(Y)

z = z(Z)

ANALYTICAL TRANSFORMATION
FUNCTIONS NOT REQUIRED

TRANSFORMATION DERIVATIVES:

ag : a_.q_ax
aX ax aX

a=_ ag a2= a__ ax
aX 2 = ax aT e.+ ax2 (_)
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CURVILINEAR GRID FOR CUMBERLANDRIVER SEGMENT

• NEAR TVA GALATIN STEAM PLANT

• CONSTANT WIDTH CHANNEL

• NON-UNIFORM GRID (x, y, & z)

• 4 CONNECTEDREGIONS

• USED IN 3-D FLOW COMPUTATIONS
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CURVILINEAR GRID FOR TENNESSEE RIVER, WILSON RESERVOIR

• BETWEEN WHEELER AND WILSON DAMS

• VARIABLE WIDTH CHANNEL

• NON-UNIFORM GRID (x only)

e USED IN 2-D DEPTH-AVERAGED FLOW COMPUTATION
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Curvilinear Grid for Green River Segment



CURVILINEAR GRID FOR GREEN RIVER SEGMENT

• NEAR PARADISE STEAM PLANT

• MODERATESINUOSITY

• VARIABLE WIDTH

• UNIFORM GRID
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Curvilinear Grid for Tennessee River, Wheeler Reservoir



CURVILINEAR GRID FOR TENNESSEE RIVER, WHEELER RESERVOIR

• NEAR REDSTONEARSENAL

e MODERATESINUOSITY

• VARIABLE WIDTH

• UNIFORM GRID
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Curvilinear Grid for Little Tennessee River Segment



CURVlLINEAR GRID FOR LITTLE TENNESSEE RIVER SEGMENT

e PART OF TELLICO LAKE

• HIGH SINUIOSITY

• VARIABLE WIDTH

• UNIFORM GRID
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CURVlLINEAR GRID FOR TOMBIGBEE RIVER SEGMENT

• PORTION OF TENNESSEE - TOMBIGBEE WATERWAY

e EXTREME SINUOSITY

• VARIABLE WIDTH

• UNIFORM GRID
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Integration of CENTERLINE Program with 3-D PLUME Program
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NON-UNIFORM BOTTOM CONSIDERATIONS

• BOTTOM PROFILES BASED ON SOUNDINGS

• LONGITUDINAL AND TRANSVERSE VARIATIONS ACCEPTED

• GRID SPACING LIMITS RESOLUTION OF BOTTOM SHAPE

• BOTTOM PROFILES NOT USED FOR TRANSFORMATION
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Velocity Vector Plot for Cumberland River Segment
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I CHANNEL BANK COORDINATES I

2-D PLUME PROGRAM

CHANNEL
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CONTOURS

I PARTICLE
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POSITION

i HYDRODYNAMIC SOLUTION i

TRACK PROGRAM

I PARTICLE TRAJECTORY I

Integration of CENTERLINE Program with 2-D PLUME and TRACK Programs
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CENTERLINE SUMMARY

• APPLICABLE TO SINUOUS RIVER CHANNELS

• CURRENTLY OPERATIONAL

• DIGITIZATION OF CHANNEL COORDINATES

• CONSTANT/VARIABLE CHANNEL WIDTH OPTIONS

• UNIFORM/NON-UNIFORM GRID OPTIONS

• PRESENTLY COUPLED WITH 2-D AND 3-D HYDRODYNAMIC

MODELS


